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Abstract

In this work we explore the Perturb and Combine idea, celebrated in supervised learning,
in the context of probability density estimation in high-dimensional spaces with graphical
probabilistic models. We propose a new family of unsupervised learning methods of mix-
tures of large ensembles of randomly generated tree or poly-tree structures. The specific
feature of these methods is their scalability to very large numbers of variables and training
instances. We explore various simple variants of these methods empirically on a set of
discrete test problems of growing complexity.

1 Introduction

Learning of Bayesian networks aims at model-
ing the joint density of a set of random variables
from a random sample of joint observations of
these variables (Cowell et al., 1999). Such a
graphical model may be used for elucidating the
conditional independences holding in the data-
generating distribution, for automatic reasoning
under uncertainties, and for Monte-Carlo simu-
lations. Unfortunately, currently available algo-
rithms for Bayesian network structure learning
are either restrictive in the kind of distributions
they search for, or of too high computational
complexity to be applicable in very high dimen-
sional spaces (Auvray and Wehenkel, 2008).

In the context of supervised learning, a
generic framework which has led to many fruit-
ful innovations is called “Perturb and Com-
bine”. Its main idea is to on the one hand
perturb in different ways the optimization algo-
rithm used to derive a predictor from a data-set
and on the other hand to combine in some ap-
propriate fashion a set of predictors obtained by

multiple iterations of the perturbed algorithm
over the data-set. In this framework, ensembles
of weakly fitted randomized models have been
studied intensively and used successfully during
the last two decades. Among the advantages
of these methods, let us quote the improved
scalability of their learning algorithms and the
improved predictive accuracy of their models.
For example, ensembles of extremely random-
ized trees have been applied successfully in com-
plex high-dimensional tasks, as image and se-
quence classification (Geurts et al., 2006).

In this work we explore the Perturb and Com-
bine idea for probability density estimation. We
study a family of learning methods to infer mix-
tures of large ensembles of randomly generated
tree structured Bayesian networks. The specific
feature of these methods is their scalability to
very large numbers of variables and training in-
stances. We explore various simple variants of
these methods empirically on a set of discrete
test problems of growing complexity.

The rest of this paper is organized as follows.



Section 2 discusses the classical Bayesian frame-
work for learning mixtures of models. Section 3
describes the proposed approach and algorithms
presented in this paper and Section 4 reports
simulation results on a class of simple discrete
test problems. Section 5 discusses our work in
relation with the literature and Section 6 briefly
concludes and highlights some directions for fur-
ther research.

2 Bayesian modeling framework

Let X = {X1, . . . ,Xn} be a finite set of dis-
crete random variables, and D = (x1, · · · , xd)
be a data-set (sample) of joint observations
xi = (xi

1, · · · , xi
n) independently drawn from

some data-generating density PG(X).
In the full Bayesian approach, one assumes

that PG(X) belongs to some space of densi-
ties D described by a model-structure M ∈ M
and model-parameters θM ∈ ΘM , and one infers
from the data-set a mixture of models described
by the following equation:

PD(X|D) =
∑

M∈M

P(M |D) P(X|M,D), (1)

where P(M |D) is the posterior probability over
the model-space M conditionally on the data
D, and where P(X|M,D) is the integral:

∫

ΘM

P(X|θM ,M) dP(θM |M,D). (2)

So PD(X|D) is computed by:

∑

M∈M

P(M |D)

∫

ΘM

P(X|θM ,M) dP(θM |M,D),

(3)
where dP(θM |M,D) is the posterior density of
the model-parameter and P(X|θM ,M) is the
likelihood of observation X for the structure M
with parameter θM .

When the space of model-structures M is the
space of Bayesian networks over X, approxima-
tions have to be done in order to make tractable
the computation of Equation (3). (Chicker-
ing and Heckerman, 1997) show that Equa-
tion (2) can be simplified by the likelihood esti-
mated with the parameters of maximum poste-
rior probability θ̃M = arg maxθM

P(θM |M,D),

under the assumption of a Dirichlet distribu-
tion (parametrized by its coefficients αi) for the
prior distribution of the parameters P(θM).

Another approximation to consider is sim-
plifying the summation over all the possible
model-structures M . As the size of the set of
possible Bayesian network structures is super-
exponential in the number of variables (Robin-
son, 1977), the summation of Equation (1) must
be performed over a strongly constrained sub-
space M̂ obtained for instance by sampling
methods (Madigan and Raftery, 1994; Madigan
and York, 1995; Friedman and Koller, 2000),
yielding the approximation

P
M̂

(X|D) =
∑

M∈M̂

P(M |D)P(X|θ̃M ,M). (4)

Let us note here that this equation is sim-
plified once more when using classical structure
learning methods, by keeping only the model
M = M̃ maximising P(M |D) over M:

PM̃ (X|D) = P(X|θ̃M̃ , M̃). (5)

Let us emphasize that this further simplication
has also the advantage of producing a single

graphical model from which one can read of in-
dependencies directly. This may however be at
the price of a possibly significant reduction of
accuracy of the density estimation.

3 Randomized poly-tree mixtures

In this work, we propose to choose as set M̂
in Equation (4) a randomly generated subset of
pre-specified cardinality of poly-tree models.

3.1 Poly-tree models

A poly-tree model for the density over X is
defined by a directed acyclic graph structure
P whose skeleton is acyclic and connected,
and whose set of vertices is in bijection with
X, together with a set of conditional densities
PP (Xi|paP (Xi)), where paP (Xi) denotes the set
of variables in bijection with the parents of Xi

in P . The structure P represents graphically
the density factorization

PP (X1, . . . ,Xn) =

n
∏

i=1

PP (Xi|paP (Xi)). (6)



The model parameters are thus here specified
by the set of distributions:

θP = (PP (Xi|paP (Xi)))
n
i=1

. (7)

The structure P can be exploited for prob-
abilistic inference over PP (X1, . . . ,Xn) with a
computational complexity linear in the number
of variables n (Pearl, 1986).

One can define nested subclasses Pp of poly-
tree structures by imposing constraints on the
maximum number p of parents of any node. In
these subclasses, not only inference but also pa-
rameter learning is of linear complexity in the
number of variables. The smallest such subclass
is called the tree subspace, in which nodes have
exactly one parent (p = 1).

When necessary, we will denote by P∗ (re-
spectively P1) the space of all possible poly-tree
(respectively tree) structures defined over X.

3.2 Mixtures of poly-trees

A mixture distribution P
P̂
(X1, . . . ,Xn) over a

set P̂ = {P1, . . . , Pm} of m poly-trees is defined
as a convex combination of elementary poly-tree
densities, i.e.

P
P̂
(X1, . . . ,Xn) =

m
∑

i=1

µiPPi
(X1, . . . ,Xn), (8)

where µi ∈ [0, 1] and
∑m

i=1
µi = 1, and where

we leave for the sake of simplicity implicit the
values of the parameter sets θ̃i of the individual
poly-tree densities.

While single poly-tree models impose strong
restrictions on the kind of densities they can
represent, mixtures of poly-trees are universal
approximators, as well as mixtures of trees or
chains, or even mixtures of empty graphs (i.e.
Naive Bayes with hidden class), as shown in
(Meila-Predoviciu, 1999) section 3.1.

3.3 Random poly-tree mixture learning

Our generic procedure for learning a random
poly-tree mixture distribution from a data-set
D is described by Algorithm 1; it receives
as inputs X, D, m, and three procedures
DrawPolytree, LearnPars, CompWeights.

Algorithm 1 (Learning a poly-tree mixture)

1. Repeat for i = 1, · · · ,m:

(a) Pi = DrawPolytree,

(b) For j = 1, · · · , n:
θ̃Pi

= LearnPars(Pi,D)

2. (µ)mi=1
= CompWeights((Pi, θ̃Pi

)mi=1
,D)

3. Return
(

µi, Pi, θ̃Pi

)m

i=1

.

3.4 Specific variants

In our first investigations reported below, we
have decided to compare various simple versions
of the above generic algorithm.

In particular, we consider both mixtures of
randomly generated subsets of unconstrained
poly-trees (by sampling from a uniform density
over P∗), and mixtures of tree structures (by
sampling from a uniform density over P1). The
random sampling procedures are described in
Section 3.5.

As concerns the mixture coefficients, we will
compare two variants, namely uniform weight-
ing (coefficient µi = 1

m ,∀i = 1, . . . ,m) and
Bayesian averaging (coefficient µi proportional
to the posterior probability of the poly-tree
structure Pi, derived from its BDeu score com-
puted from the data-set (Cowell et al., 1999)).

Notice that with large data-sets, the Bayesian
averaging approach tends to put most of the
weight on the poly-tree which has the largest
score; hence to better appraise the mixture ef-
fect, we will also provide results for the model
which uses only the highest score structure
among the m poly-trees of the ensemble, which
amounts to a kind of random search for the
MAP structure defined in Equation (5).

Finally, concerning parameter estimation, we
use the BDeu score maximization for each poly-
tree structure individually, which is tantamount
to selecting the MAP estimates using Dirich-
let priors. More specifically, in our experi-
ments which are limited to binary random vari-
ables, we used non-informative priors, which
then amounts to using α = 1/2, i.e. p(θ, 1−θ) ∝
θ−1/2(1− θ)−1/2 for the prior density of the pa-
rameters characterizing the conditional densi-
ties attached the poly-tree nodes.



3.5 Random generation of structures

Our mixture of random poly-trees and the ex-
perimental protocol described in Section 4 are
based on random sampling of several classes of
graphical structures (trees, poly-trees, and di-
rected acyclic graphs).

For sampling trees and poly-trees, we chose
to adapt the algorithm proposed by (Quiroz,
1989), which uses Prûfer coding of undirected
tree structures. This algorithm allows to sam-
ple labelled undirected trees uniformly. We have
adapted it in order to sample uniformly from the
space of directed (rooted) trees and poly-trees.
The resulting structure sampling algorithms are
efficient, since their complexity remains linear
in the number of variables. Notice however,
that only in the case of tree structures these
algorithms sample uniformly from the Markov
equivalence classes induced by these structures.
We do not know of any efficient adaptation
of these algorithms to sample uniformly from
structures of poly-trees with bounded number of
in-degrees or to sample uniformly from Markov
equivalence classes of poly-trees.

For sampling of directed acyclic graphs we
used, on the other hand, the procedure given
in (Ide et al., 2004), which allows to gener-
ate random structures which are of bounded
in-degree and which are constrained to be con-
nected. This scheme does neither yield a uni-
form sampling of these structures nor of their
equivalence classes.

4 Preliminary empirical simulations

4.1 Protocol

For a first comparison of the different variants of
our algorithm, we carried out repetitive exper-
iments for different data-generating (or target)
densities. All our experiments were carried out
with models for a set of eight binary random
variables. We chose to start our investigations
in such a simple setting in order to be able to
compute accuracies exactly (see Section 4.1.4),
and so that we can easily analyze the graphi-
cal structures of the target densities and of the
inferred set of poly-trees.

4.1.1 Choice of target density

To choose a target density PG(X), we first
decide whether it will factorize according to a
poly-tree or to a directed acyclic graph struc-
ture. Then we use the appropriate random
structure generation algorithm (see Section 3.5)
to draw a structure and, we choose the param-
eters of the target density by selecting for each
conditional density of the structure (they are all
related to binary variables) two random num-
bers in the interval [0, 1] and by normalizing.

4.1.2 Generation of data-sets

For each target density and data-set size, we
generate 10 different data-sets by sampling val-
ues of the eight random variables using the
Monte-Carlo method with the target structure
and parameter values.

We carry out simulations with data-set sizes
of 250 and 2000 elements respectively. Given
the total number of 256 possible configurations
of our eight random variables, we thus look at
both small and large data-sets.

4.1.3 Learning of mixtures

For a given data-set and for a given variant
of the mixture learning algorithm we generate
ensemble models of growing sizes, respectively
m = 1, m = 10, and then up to m = 1000 by
increments of 10. This allows us to appraise the
effect of the ensemble size on the quality of the
resulting model.

4.1.4 Accuracy evaluation

The quality of any density inferred from a
data-set is evaluated by the symmetric Kulback-
Leibler divergence (Kullback and Leibler, 1951)
between this density and the data-generating
density PG(X) used to generate the data-set.
This is computed by

KLs(PG, PM )=KL(PG||PM )+KL(PM ||PG), (9)

where PM(X) denotes the density that is eval-
uated, and where

KL(P||P′)=
∑

X∈X

P(X) ln

(

P(X)

P′(X)

)

, (10)

and X denotes the set of all possible configura-
tions of the random variables in X.



We use this formula to evaluate our mix-
ture models, and we also provide baseline values
obtained with two different reference models,
namely a baseline approach M0 where a com-
plete directed acyclic model is used with pa-
rameter values inferred by BDeu score maxi-
mization on the data-set, as well as a golden

standard M1 where the parameters of the tar-
get structure used to generate the data-set are
re-estimated by BDeu score maximization from
the data-set.

4.1.5 Software implementation

Our various algorithms of model gen-
eration were implemented in C++
with the Boost library available at
http://www.boost.org/ and various APIs
provided by the ProBT c© platform available at
http://bayesian-programming.org.

4.2 Results

4.2.1 Sample of results

Figure 1 provides a representative set of
learning curves for a target density correspond-
ing to the directed acyclic graph (DAG) rep-
resented on he top of the figure. The middle
and lower parts represent the learning curves
obtained with respectively 250 and 2000 obser-
vations in the data-set. The horizontal axis cor-
responds to the number m of mixture terms,
whereas the vertical axis corresponds to the
KLs measures with respect to the target den-
sity. All the curves represent average results
obtained over ten different data-sets of the spec-
ified size.

The dashed horizontal lines in the lower parts
of these graphics correspond to the golden stan-
dard M1, whereas the plain horizontal line (not
shown on the middle graphic) correspond to the
M0 baseline (its results are very bad on the
small data-set and were therefore not shown).

The dashed, respectively black and red,
curves in the upper part of both diagrams corre-
spond to uniform mixtures of, respectively trees
and poly-trees. We observe that their perfor-
mances are quite disappointing, even though
uniform poly-tree mixtures are slightly better
than uniform tree mixtures.

Uniform mixtures

Weighted mixture of trees

Golden standard (M1)

Highest scoring poly−tree

Weighted mixture of poly−trees

M0 (baseline)

M1

Figure 1: Example results. Top: target den-
sity DAG structure. Middle: learning curves
with data-set size of 250 observation. Bottom:
learning curves with 2000 observation. (see text
for explanation of curves legends).

The two plain curves, respectively black and
red, in the lower parts of the diagrams cor-
respond to mixtures of respectively trees and
poly-trees, when they are weighted proportion-
ally to their posterior probability given the
data-set. They provide much better perfor-
mances, as compared to the baseline M0 and
are competitive with the golden standard M1.
We also observe that for the smaller sample size
the tree mixtures outperform the poly-tree mix-
tures, whereas for the larger sample size they
provide identical performances.

For the sake of comparison, we have also pro-
vided the behaviour of the “trivial mixture” (in
green) which retains only the highest scoring
structure of the generated ensemble. We ob-
serve that in small sample conditions, this lat-
ter model is outperformed by the plain Bayesian
mixtures, while in the case of large sample size
it is largely equivalent.

We complete these results with the two sets



Figure 2: Example results for a target density
with poly-tree structure.

of curves of Figure 2, obtained in similar con-
ditions but when the target density factorizes
according to a poly-tree structure. Overall,
the previous conclusions still hold true. The
main difference that we observe, is that in the
case of the poly-tree target density the KLs

scores seem to converge more rapidly towards
M1 when the mixture size m increases.

4.2.2 Analysis of asymptotic behavior

Since in most trials, our learning curves sta-
bilized around m = 1000, we consider interest-
ing to provide a synthetic picture of the per-
formances of the different methods under these
“asymptotic” conditions. To this end, we show
on Figure 3 overall asymptotic performances in
the form of box plots of the KLs values of the
different methods.

On this figure, each box plot (box-and-
whisker diagram) depicts the density of KLs

values of a particular algorithm variant (from
left to right the golden standard M1, the
weighted poly-tree mixtures and the weighted
tree mixtures), for a fixed sample size, but over
the combination of 5 different target DAG struc-
tures, 3 different target poly-tree structures,
and for each case 10 data-sets. For the sake

M1 P-Tr mix Tr mix

.20

.15

.10

.05

d=250

M1 P-Tr mix Tr mix

1.5

1.0

.5

0

d=2000

Figure 3: Synthesis of asymptotic behavior
(m = 1000, relative KLs wrt baseline M0).

of interpretation, the KLs values are normal-
ized by dividing them by the value obtained in
the same conditions (same target density, and
same data-set) by the M0 baseline method (and
the latter values are not represented on the box-
plots). In the left part we show the results ob-
tained with a sample size of d = 250 and in the
right part with a sample of size d = 2000.

We can synthesize these results as follows.
For both large and small sample sizes the
poly-tree mixtures outperform (but only very
slightly) the tree mixtures; this effect is less
notable in small sample conditions. In large
sample conditions (d = 2000), the poly-tree
mixtures have only a small advantage over the
baseline method M0 (their relative scores be-
ing on the average only slightly smaller than 1).
However, in small sample conditions (d = 250),
both poly-tree and tree mixtures are signifi-
cantly better than the baseline, and, actually
they yield KLs scores which are already quite
close to those of the the golden standard M1.

5 Discussion

Our choice of using random mixtures of poly-
trees was inspired by several considerations.

First of all, choosing the best structure in
the space of poly-trees is not an adequate solu-
tion from an algorithmic point of view. Indeed,
(Dasgupta, 1999) shows that finding the opti-
mal poly-tree model is not tractable for very
high dimensional spaces. On the other hand,
the space of poly-trees is a priori a rather rich



space, and it is characterized by efficient infer-
ence algorithms. Hence, even a very large mix-
ture of poly-tree densities can be queried effi-
ciently for making inferences about the data-
generating density. Furthermore, using mix-
tures of poly-trees allows in principle to repre-
sent any density.

In our experiments on the very simple prob-
lems with 8 binary variables, we observed how-
ever that in most cases using a mixture of poly-
trees was not really better than keeping only
the single best found poly-tree (except in very
small sample size conditions).

Our second reason for looking at poly-tree
mixtures was that we thought that these mod-
els would be more powerful than tree mixtures.
Indeed, (Meila-Predoviciu, 1999) already pro-
posed to use mixtures of tree models and has
designed algorithms to find the optimal com-
bination of tree structures and of the coeffi-
cients of the mixture during the learning phase.
She jointly uses the MWST (Maximum Weight
Spanning Tree) structure learning algorithm
published in the late sixties (Chow and Liu,
1968) and the Expectation-Maximization algo-
rithm for coefficients’ estimation (Dempster et
al., 1977). While this proposal is very elegant,
we believe that it is not scalable to very large
mixtures, both from the point of view of compu-
tational complexity and from the point of view
of risk of over-fitting the data-set.

Our simulation results showed however that
using random mixtures of poly-trees is only very
marginally advantageous with respect to the use
of random mixtures of trees. On the other hand,
in small sample conditions the mixtures of trees
or poly-trees turned out to be quite often of
comparable accuracy than the golden standard
M1, and in general largely superior to the com-
plete structure baseline M0.

Concerning the weighting scheme, our exper-
iments also confirmed that uniform mixtures of
randomized poly-tree or tree structured den-
sities do not work properly in the context of
density estimation. This is quite different from
the observations made in the context of tree-
based supervised learning, where uniform mix-
tures of totally randomized trees often provide

very competitive results (Geurts et al., 2006).
The main difference between these two contexts
is that in supervised learning one can easily gen-
erate a sample of randomized trees which fit well
the data-set, whereas in the context of density
estimation random tree or poly-tree structures
mostly strongly under-fit the data-set.

6 Summary and future works

We have proposed in this paper to transpose
the “Perturb and Combine” idea celebrated in
supervised learning to density estimation. We
have presented a generic framework for doing
this, based on random mixtures of poly-tree or
tree structured Bayesian networks.

The first results obtained in the context of
a simple test protocol are already interesting,
while they also highlight a certain number of
immediate future research directions.

Thus, a first line of research will be to ap-
ply our experimental protocol to a larger set of
problems including high-dimensional ones and
a larger range of sample sizes. We believe also
that a more in depth analysis of the results
with respect to the basic properties of the target
distributions would be of interest. Of course,
these investigations should also aim at sys-
tematically comparing all these algorithm vari-
ants both from a computational complexity and
from an accuracy point of view with other mix-
ture models proposed in the literature (Meila-
Predoviciu, 1999; Lowd and Domingos, 2005),
with state-of-the-art optimal structure learn-
ing algorithms (Auvray and Wehenkel, 2008),
and with other approaches proposed for efficient
learning (Friedman et al., 1999; Brown et al.,
2004) and/or efficient inference (Jaeger, 2004)
in high dimensional spaces.

Nevertheless, from these first results we are
tempted to conclude that, in order to effectively
transpose the Perturb and Combine idea to the
context of density estimation, it will be nec-
essary to design structure sampling algorithms
which are able to efficiently focus on structures
that can be fitted well enough to the available
data-set. In this respect, one straightforward
idea would be to transpose the Bagging idea
of (Breiman, 1996) to the density estimation



context. In particular, we suggest that the use
of bootstrap sampling in combination with the
efficient algorithm of finding the optimal tree
model, i.e. solving Equation (5) in the tree
space P1 using the MWST algorithm, could be
a very promising direction.

Another more generic direction of research,
is to adapt importance sampling approaches
(e.g. the cross-entropy method (Rubinstein and
Kroese, 2004)) in order to generate random-
ized ensembles of simple structures (trees, poly-
trees, etc.) that fit well the given data-set.

In a later stage, we intend to extend these al-
gorithms to the case of continuous random vari-
ables as well as when there are missing data.
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