Adaptive estimation in circular functional linear models. - Archive ouverte HAL
Article Dans Une Revue Mathematical Methods of Statistics Année : 2010

Adaptive estimation in circular functional linear models.

Résumé

We consider the problem of estimating the slope parameter in circular functional linear regression, where scalar responses Y1,...,Yn are modeled in dependence of 1-periodic, second order stationary random functions X1,...,Xn. We consider an orthogonal series estimator of the slope function, by replacing the first m theoretical coefficients of its development in the trigonometric basis by adequate estimators. Wepropose a model selection procedure for m in a set of admissible values, by defining a contrast function minimized by our estimator and a theoretical penalty function; this first step assumes the degree of ill posedness to be known. Then we generalize the procedure to a random set of admissible m's and a random penalty function. The resulting estimator is completely data driven and reaches automatically what is known to be the optimal minimax rate of convergence, in term of a general weighted L2-risk. This means that we provide adaptive estimators of both the slope function and its derivatives.
Fichier principal
Vignette du fichier
CompletJan.pdf (332.07 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00410729 , version 1 (24-08-2009)

Identifiants

Citer

Fabienne Comte, Jan Johannes. Adaptive estimation in circular functional linear models.. Mathematical Methods of Statistics, 2010, 19 (1), pp.42-63. ⟨10.3103/S1066530710010035⟩. ⟨hal-00410729⟩
100 Consultations
146 Téléchargements

Altmetric

Partager

More