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Abstract

We consider the problem of estimating the slope parameter in circular functional
linear regression, where scalar responses Y1, . . . , Yn are modeled in dependence of 1-
periodic, second order stationary random functions X1, . . . , Xn. We consider an or-
thogonal series estimator of the slope function β, by replacing the first m theoretical
coefficients of its development in the trigonometric basis by adequate estimators. We
propose a model selection procedure for m in a set of admissible values, by defining a
contrast function minimized by our estimator and a theoretical penalty function; this
first step assumes the degree of ill posedness to be known. Then we generalize the pro-
cedure to a random set of admissible m’s and a random penalty function. The resulting
estimator is completely data driven and reaches automatically what is known to be the
optimal minimax rate of convergence, in term of a general weighted L2-risk. This means
that we provide adaptive estimators of both β and its derivatives.

Keywords: Orthogonal series estimation; model selection; derivatives estimation;
mean squared error of prediction; minimax theory.
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1 Introduction

Functional linear models have become very important in a diverse range of disciplines, in-
cluding medicine, linguistics, chemometrics as well as econometrics (see for instance Ramsay
and Silverman [2005] and Ferraty and Vieu [2006], for several case studies, or more specific,
Forni and Reichlin [1998] and Preda and Saporta [2005] for applications in economics).
Roughly speaking, in all these applications the dependence of a response variable Y on the
variation of an explanatory random function X is modeled by

Y =

∫ 1

0
β(t)X(t)dt + σε, σ > 0, (1.1)

for some error term ε. One objective is then to estimate nonparametrically the slope function
β based on an independent and identically distributed (i.i.d.) sample of (Y,X).
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In this paper we suppose that the random function X is taking its values in L2[0, 1],
which is endowed with the usual inner product 〈·, ·〉 and induced norm ‖·‖, and that X has
a finite second moment, i.e., E‖X‖2 < ∞. In order to simplify notations we assume that
the mean function of X is zero. Moreover, the random function X and the error term ε
are uncorrelated, where ε is assumed to have mean zero and variance one. This situation
has been considered, for example, in Cardot et al. [2003], Müller and Stadtmüller [2005] or
most recently James et al. [2009]. Then multiplying both sides in (1.1) by X(s) and taking
the expectation leads to

g(s) := E[Y X(s)] =

∫ 1

0
β(t) cov(X(t),X(s))dt =: [Γβ](s), s ∈ [0, 1], (1.2)

where g belongs to L2[0, 1] and Γ denotes the covariance operator associated to the random
function X. We shall assume that there exists a unique solution β ∈ L2[0, 1] of equation
(1.2). Estimation of β is thus linked with the inversion of the covariance operator Γ and,
known to be an ill-posed inverse problem (for a detailed discussion in the context of inverse
problems see chapter 2.1 in Engl et al. [2000], while in the special case of a functional linear
model we refer to Cardot et al. [2003]).

In this paper we consider a circular functional linear model (defined below), where the
associated covariance operator Γ admits a spectral decomposition {λj , ϕj , j > 1} given by
the trigonometric basis {ϕj} as eigenfunctions and a strictly positive, possibly not ordered,
zero-sequence λ := (λj)j>1 of corresponding eigenvalues. Then the normal equation can be
rewritten as follows

β =
∞∑

j=1

[g]j
λj

· ϕj with [g]j := 〈g, ϕj〉, j > 1. (1.3)

For estimation purpose, we replace the unknown quantities gj and λj in equation (1.3) by
their empirical counterparts. That is, if (Y1,X1), . . . , (Yn,Xn) denotes an i.i.d. sample of
(Y,X), then for each j > 1, we consider the unbiased estimator

[ĝ]j :=
1

n

n∑

i=1

Yi [Xi]j , and λ̂j :=
1

n

n∑

i=1

[Xi]
2
j with [Xi]j := 〈Xi, ϕj〉

for [g]j and λj respectively. The orthogonal series estimator β̂m of β is then defined by

β̂m :=
m∑

j=1

ĝj

λ̂j

· 1{λ̂j > 1/n} · ϕj . (1.4)

Note that we introduce an additional threshold 1/n on each estimated eigenvalue λ̂j, since
it could be arbitrarily close to zero even in case that the true eigenvalue λj is sufficiently far
away from zero. Moreover, the orthogonal series estimator keeps only m coefficients; this is
an alternative to the popular Tikhonov regularization (c.f. Hall and Horowitz [2007]), where
in (1.3) the factor 1/λj is replaced by λj/(α + λ2

j ). Thresholding in the Fourier domain
has been used, for example, in a deconvolution problem in Mair and Ruymgaart [1996] or
Neumann [1997] and coincides with an approach called spectral cut-off in the numerical
analysis literature (c.f. Tautenhahn [1996]).
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In this paper we shall measure the performance of an estimator β̂ of β by the Fω-risk,
that is E‖β̂ − β‖2

ω, where for some strictly positive sequence of weights ω := (ωj)j>1

‖f‖2
ω :=

∞∑

j=1

ωj|〈f, ϕj〉|2 for all f ∈ L2[0, 1].

This general framework allows us with appropriate choices of the weight sequence ω to cover
the estimation not only of the slope parameter itself (c.f. Hall and Horowitz [2007]) but
also of its derivatives as well as the optimal estimation with respect to the mean squared
prediction error (c.f. Cardot et al. [2003] or Crambes et al. [2009]). For a more detailed
discussion, we refer to Cardot and Johannes [2009]. It is well-known that the obtainable
accuracy of any estimator in terms of the Fω-risk is essentially determined by the regularity
conditions imposed on both the slope parameter β and the eigenvalues λ. In the literature
the a-priori information on the slope parameter β such as smoothness is often characterized
by considering ellipsoids (see definition below) in L2[0, 1] with respect to a weighted norm
‖·‖γ for a pre-specified weight sequence γ. Moreover, it is usually assumed that the sequence
λ of eigenvalues of Γ has a polynomial decay (c.f. Hall and Horowitz [2007] or Crambes
et al. [2009]). However, it is well-known that this restriction may exclude several interesting
cases, such as an exponential decay. Therefore, we do not impose a specific form of a decay.

It is shown in Johannes [2009] that the estimator β̂m given in (1.4) is optimal in a
minimax sense if the parameter m = m(n) is appropriately chosen. Roughly speaking, the
introduction of a dimension reduction implies a bias in addition to the classical variance
term which leads the statistician to perform a compromise. The optimal choice of the
dimension parameter m requires an a-priori knowledge about the sequences γ and λ, which
is unknown in practice. However, useful elements of this previous work are recalled in
Section 2.

Our aim in this paper, is to provide a data driven method to select the dimension
parameter m, in such a way that the bias and variance compromise is automatically reached
by the resulting estimator. The methodology is inspired by the works of Barron et al. [1999],
now extensively described in Massart [2007] whose results, like ours, are in a non asymptotic
setting. By re-writing the estimator β̂m as a minimum contrast estimator over the function
space Sm − called model − linearly spanned by ϕ1, . . . , ϕm, we can propose a model selection
device by defining a penalty function. We obtain a selected m̂ in an admissible set of values
of m. We first define and study in Section 3, the resulting estimator β̂m̂ with deterministic
penalty and deterministic set of admissible m’s: this requires to assume that the degree of
ill-posedness of the problem is known. In other words, information are first supposed to be
available about the order of the decay of the eigenvalues λj. This study gives the tools to
the next and final step: we define in Section 4 a completely data driven estimator, built by
using a random penalty function and a random set of admissible dimensions m. We can
provide a general risk bound for this estimator and show that it can automatically reach
the optimal rate of convergence, without requiring any a-priori knowledge. All proofs are
gathered in the Appendix section.

2 Background to the methodology.

2.1 Notations and basic assumptions

Circular functional linear model. In this paper we suppose that the regressor X is
1-periodic, that is X(0) = X(1), and second order stationary, i.e., there exists a positive
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definite covariance function c : [−1, 1] → R such that cov(X(t),X(s)) = c(t−s), s, t ∈ [0, 1].
Then it is straightforward to see that the covariance function c(·) is 1-periodic too. In
this situation applying the covariance operator Γ equals a convolution with the covariance
function. Since c(·) is 1-periodic it is easily seen that due to the classical convolution
theorem, the eigenfunctions of the covariance operator Γ are given by the trigonometric
basis

ϕ1(s) :≡ 1, ϕ2k(s) :=
√

2 cos(2πks), ϕ2k+1(s) :=
√

2 sin(2πks), s ∈ [0, 1], k > 1

and the corresponding eigenvalues satisfy

λ1 =

∫ 1

0
c(s)ds, λ2k = λ2k+1 =

∫ 1

0
cos(2πks)c(s)ds, k > 1.

Notice that the eigenfunctions are known to the statistician and only the eigenvalues depend
on the unknown covariance function c(·), i.e., have to be estimated.

Moment assumptions. The results derived below involve additional conditions on the
moments of the random function X and the error term ε, which we formalize now. Let X be
the set of all centered 1-periodic and second order stationary random functions X ∈ L2[0, 1]
with finite second moment, i.e., E‖X‖2 < ∞, and strictly positive covariance operator Γ.
If λ := (λj)j>1 denotes the sequence of eigenvalues associated to Γ, then given X ∈ X the
random variables {[X]j/

√
λj , j ∈ N} are centered with variance one. Here and subsequently,

we denote by X k
η , k ∈ N, η > 1, the subset of X containing only random functions X such

that the k-th moment of the corresponding random variables [X]j/
√

λj, j ∈ N are uniformly
bounded, that is

X k
η :=

{
X ∈ X such that sup

j∈N

E

∣∣∣[X]j/
√

λj

∣∣∣
k

6 η
}

.

It is worth noting that in case X ∈ X is a Gaussian random function the corresponding
random variables [X]j/

√
λj, j ∈ N, are Gaussian with mean zero and variance one. Hence,

if η > 3 then any Gaussian random function X ∈ X belongs also to X k
η for each k ∈ N.

Minimal regularity conditions. Given a strictly positive sequence of weights w :=
(wj)j>1, denote by Fc

w the ellipsoid with radius c > 0, that is,

Fc
w :=

{
f ∈ L2[0, 1] :

∞∑

j=1

wj |〈f, ϕj〉|2 =: ‖f‖2
w 6 c

}
.

Furthermore, let Fw := {f ∈ L2[0, 1] : ‖f‖2
w < ∞} and 〈f, g〉w :=

∑∞
j=1 wj〈f, ϕj〉〈ϕj , g〉.

Note that this weighted inner product induces the weighted norm ‖·‖w.
Here and subsequently, given strictly positive sequences of weights γ := (γj)j>1 and

ω := (ωj)j>1 we shall measure the performance of any estimator β̂ by its maximal Fω-risk

over the ellipsoid Fρ
γ with radius ρ > 0, that is supβ∈Fρ

γ
E‖β̂ − β‖2

ω. We do not specify the
sequences of weights γ and ω, but impose from now on the following minimal regularity
conditions.

Assumption 2.1. Let ω := (ωj)j>1 and γ := (γj)j>1 be positive sequences of weights with
ω1 = 1 and γ1 = 1 such that (1/γj)j>1 and (ωj/γj)j>1 are non increasing zero-sequences.
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Note that under Assumption 2.1 the ellipsoid Fρ
γ is a subset of Fρ

ω, and hence the Fω-risk
a well-defined risk for β. Roughly speaking, if Fρ

γ describes p-times differentiable functions,
then the Assumption 2.1 ensures that the Fω-risk involves maximal s < p derivatives.

2.2 Minimax optimal estimation.

The objective of the paper is to construct an estimator which attains the minimal rate of
convergence of the maximal Fω-risk over the ellipsoid Fρ

γ for wide range of sequences γ
and ω satisfying Assumption 2.1, without using an a-priori knowledge of neither γ nor ρ.
Therefore, let us first recall a lower bound which can be found in Johannes [2009]. Let
m∗ := (m∗

n) ∈ N for some △ > 1 be chosen such that

1/△ 6
γm∗

n

n ωm∗
n

m∗

n∑

j=1

ωj

λj
6 △,

i.e. (1/n)
∑m∗

n
j=1 ωj/λj and ωm∗

n
/γm∗

n
have the same orders.

Given an i.i.d. n-sample of (Y,X) obeying (1.1) with σ > 0 and X ∈ X with associated
sequence of eigenvalues λ, we have then for any estimator β̆ that

sup
β∈Fρ

γ

{
E‖β̆ − β‖2

ω

}
>

1

4△ min

(
σ2

2
,

ρ

△

)
max(ωm∗

n
/γm∗

n
, 1/n) for all n > 1. (2.1)

On the other hand consider the estimator β̂m defined in (1.4) with dimension parameter
m = m∗

n. If in addition X ∈ X 16
ξ , then it is shown in Johannes [2009] that there exists a

numerical constant C > 0 such that

sup
β∈Fρ

γ

{
E‖β̂m∗

n
− β‖2

ω

}
6 C △3 ξ [ρ E‖X‖2 + σ2] max(ωm∗

n
/γm∗

n
, 1/n).

Therefore, the minimax-optimal rate of convergence is of order O(max(ωm∗
n
/γm∗

n
, 1/n)). As

a consequence, the orthogonal series estimator β̂m∗
n

attains this optimal rate and hence is
minimax-optimal. However, the definition of the dimension parameter m∗

n used to construct
the estimator involves an a-priori knowledge of the sequences γ, ω and λ. Throughout the
paper our aim is to construct a data-driven choice of the dimension parameter not requiring
this a-priori knowledge and automatically attaining the optimal rate of convergence.

2.3 Example of rates

We compute in this section the rates that we can obtain in three configurations for the
sequences γ, ω and λ. These cases will be referred to in the following. In all three cases, we
take the sequence ω with ωj = j2s, j > 1, for s ∈ R.

Case [P-P] Polynomial-Polynomial. Consider sequences γ and λ with γj = j2p, j > 1,
for p > max(0, s), and λj ≍ j−2a, j > 1, for a > 1/2 respectively, where the notation
uj ≍ vj , j > 1, means that there exists a constant d > 0 such that uj/d 6 vj 6 duj for

all j > 1. Then it is easily seen that (m∗
n)2(s−p) =

ωm∗
n

γm∗
n

≍ ∑m∗

n
j=1

ωj

nυj
≍ n−1

∑m∗

n
j=1 j2s+2a

and hence m∗
n ≍ n1/(2p+2a+1) if 2s + 2a + 1 > 0, m∗

n ≍ n1/[2(p−s)] if 2s + 2a + 1 < 0
and m∗

n ≍ (n/ log(n))1/[2(p−s)] if 2a + 2s + 1 = 0. Finally, the optimal rate attained
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by the estimator is max(n−(2p−2s)/(2a+2p+1), n−1), if 2s + 2a + 1 6= 0 (and log(n)/n if
2s + 2a + 1 = 0). Observe that an increasing value of a leads to a slower optimal rate
of convergence. Therefore, the parameter a is called degree of ill-posedness (c.f. Natterer
[1984]).

Remark 2.1. Obviously the rate is parametric if 2a + 2s + 1 < 0. The case 0 6 s < p can
be interpreted as the L2-risk of an estimator of the s-th derivative of the slope parameter β.
On the other hand the case, s = −a, corresponds to the mean-prediction error (c.f. Cardot
and Johannes [2009]). �

Case [E-P] Exponential-Polynomial. Consider sequences γ and λ with γj = exp(j2p),
j > 1, for p > 0, and (as previously) λj ≍ j−2a, j > 1, for a > 1/2 respectively. Then

m∗
n is such that exp(−(m∗

n)2p)(m∗
n)2s =

ωm∗
n

γm∗
n

≍ ∑m∗

n
j=1

ωj

nυj
≍ n−1

∑m∗

n
j=1 j2s+2a. In case

2a + 2s + 1 > 0 this is equivalent to exp(−(m∗
n)2p) ≍ (m∗

n)2a+1n−1 and hence m∗
n ≍

(log n− 2a+1
2p log(log n))1/(2p). Thereby, n−1(log n)(2a+1+2s)/(2p) is the optimal rate attained

by the estimator. Furthermore, if 2a+2s+1 < 0, then m∗
n ≍ (log(n)+(s/p) log(log(n)))1/(2p)

and the rate is parametric, while if 2a + 2s + 1 = 0, the rate is of order log(log(n))/n.

Case [P-E] Polynomial-Exponential. Consider sequences γ and λ with γj = j2p, j > 1,
for p > max(0, s), and λj ≍ exp(−j2a), j > 1, for a > 0 respectively. Then (m∗

n)2(s−p) =
ωm∗

n
γm∗

n
≍∑m∗

n
j=1

ωj

nυj
≍ n−1

∑m
j=1 j2s exp(j2a) and hence m∗

n ≍ (log n−2p+(2a−1)∨0

2a log(log n))1/(2a)

with (q)∨0 := max(q, 0). Thereby, (log n)−(p−s)/a is the optimal rate attained by the esti-
mator. The parameter a reflects again the degree of ill-posedness since an increasing value
of a leads also here to a slower optimal rate of convergence.

3 A model selection approach: known degree of ill-posedness

In the previous section, we have recalled an estimation procedure that attains the optimal
rate of convergence in case the slope parameter belongs to some ellipsoid Fρ

γ and its accuracy
is measured by a Fω-risk. In this section, we suppose that there exists an a-priori knowledge
concerning the degree of ill-posedness, that is the asymptotic behavior of the sequence of
eigenvalues λ is known. The objective is the construction of an adaptive estimator which
depends neither on the sequence of weights γ nor on the radius ρ but still attains the optimal
rate over the ellipsoid Fρ

γ . In this section, we use the following assumption.

Assumption 3.1. Let λ := (λj)j>1 denote the sequence of eigenvalues associated to the
regressor X and let ω := (ωj)j>1 be a sequence satisfying Assumption 2.1 such that

(i) there exist non decreasing sequences δ := δ(λ, ω) := (δm(λ, ω))m>1 and ∆ := ∆(λ, ω) :=
(∆m(λ, ω))m>1 with δm >

∑m
j=1 ωj/λj and ∆m > max16j6m ωj/λj for all m > 1 such

that for some Σ > 0,

∑

m>1

∆m exp(− δm

6∆m
) 6 Σ. (3.1)

(ii) the sequence M := (Mn)n>1 given by Mn := arg max
16M6n

{δM 6 δ1n(ωM )∧1}, n > 1, with
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(q)∧1 := min(q, 1), satisfies

min
16j6Mn

λj > 2/n for all n > 1. (3.2)

It is worth to note that both sequences δ and M depend on the eigenvalues λ.

3.1 Definition of the estimator.

Consider the orthogonal series estimator β̂m defined in (1.4). In what follows we construct
an adaptive procedure to choose the dimension parameter m based on a model selection
approach. Therefore, let Φ̂u =

∑
j>1 λ̂−1

j 1{λ̂j > 1/n}[u]jϕj for u ∈ L2[0, 1] with Fourier
coefficients [u]j := 〈u, ϕj〉. Then we consider the contrast

Υ(t) := ‖t‖2
ω − 2〈t, Φ̂bg〉ω. (3.3)

Define Sm := span{ϕ1, . . . , ϕm}. Obviously for all t ∈ Sm it follows that 〈t, Φ̂bg〉ω = 〈t, β̂m〉ω
and hence Υ(t) = ‖t − β̂m‖2

ω − ‖β̂m‖2
ω. Therefore, we have for all m > 1

arg min
t∈Sm

Υ(t) = β̂m.

Let X ∈ X 4
η and E|Y/σY |4 6 η with σ2

Y := Var(Y ). Under Assumption 3.1, we consider
the penalty function

pen(m) := 192σ2
Y η

δm

n
.

The adaptive estimator β̂bm is obtained from (1.4) by choosing the dimension parameter

m̂ := arg min
16m6Mn

{
Υ(β̂m) + pen(m)

}
. (3.4)

Note that we can compute

Υ(β̂m) = −
m∑

j=1

ωj

[ĝ]2j

λ̂2
j

1{λ̂j > 1/n}.

Remark 3.1. Throughout the paper we ignore that also the value σ2
Y and η are unknown

in practice. Obviously σ2
Y can be estimated straightforwardly by its empirical counterpart.

An estimator of the value η is not a trivial task. However, if in addition the regressor X and
the error term ε are Gaussian, then Y ∼ N (0, σ2

Y ) and hence η = 3 is a-priori known. We
may take an other point of view if we chose a-priori a sufficiently large η > 3 (the Gaussian
case is included) then the following assertions apply as long as the unknown data generating
process satisfies the conditions X ∈ X 4

η and E|Y/σY |4 6 η. �

3.2 An upper bound.

We derive first an upper bound of the adaptive estimator β̂bm by assuming an a-priori
knowledge of appropriate sequences δ and M which are used in the construction of the
penalty and the admissible set of values of m.
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Theorem 3.1. Assume an n-sample of (Y,X) satisfying (1.1). Let E|Y/σY |4 6 η and
X ∈ X 4

η be 1-periodic and second order stationary with associated eigenvalues λ.
Suppose that the sequences γ and ω satisfy Assumption 2.1. Let δ, △ and M be sequences

satisfying Assumption 3.1 for some constant Σ. Consider the estimator β̂bm defined in (1.4)
with m̂ given by (3.4). If in addition X ∈ X 24

ξ and E|Y/σY |24 6 ξ, then there exists a
numerical constant C such that for all n > 1 and 1 6 m 6 Mn, we have

sup
β∈Fρ

γ

{
E‖β̂bm − β‖2

ω

}
6 C

{ωm

γm
ρ +

δm

n
(ρE‖X‖2 + σ2)η

}

+
K

n
(ρE‖X‖2 + σ2) [δ1 + ρ][1 + (E‖X‖2)2],

where K = K(Σ, η, ξ, δ1) is a constant depending on Σ, η, ξ and δ1 only.

It is worth noting, that in the last assertion we do not impose a complete knowledge of
the sequence of eigenvalues λ associated to the regressor X. In the next Corollary we state
the upper bound when balancing the terms depending on m, which is obviously a trivial
consequence of Theorem 3.1.

Corollary 3.2. Let the assumptions of Theorem 3.1 be satisfied. If in addition the se-
quence m⋄ := (m⋄

n)n>1 is chosen such that γm⋄
n
δm⋄

n
/(n ωm⋄

n
) ≍ 1, n > 1, then we have

sup
β∈Fρ

γ

{
E‖β̂bm − β‖2

ω

}
= O

(
max(ωm⋄

n
/γm⋄

n
, 1/n)

)
as n → ∞.

Remark 3.2. Comparing the last assertion with the lower bound given in (2.1), we see that
the adaptive estimator attains the optimal rate of convergence, as long as
supn>1 ωm⋄

n
γm∗

n
/(γm⋄

n
ωm∗

n
) < ∞. Obviously a sufficient condition is given if the sequence δ

satisfies in addition supm>1 δm/(
∑m

j=1 ωj/λj) < ∞. The polynomial case below provides an
example. However, this condition is not necessary as can be seen in the exponential case.
�

3.3 Convergence rate of the theoretical adaptive estimator.

We described in Section 2.3 three different cases where we could choose the model m such
that the resulting estimator reaches the optimal minimax rate. The following result shows
that, in case of known degree of ill-posedness, we can propose choices of sequences δ, ∆ and
M such that the penalized estimator automatically attains the optimal rate.

Proposition 3.3. In cases [P-P] and [E-P] with 2a+2s+1 > 0, let δm ≍ m2a+2s+1, ∆m ≍
m(2a+2s)∨0 and Mn ≍ n1/(2a+1+(2s)∨0)with (q)∨0 := max(q, 0). While in case [P-E], choose
δm ≍ m2a+1+(2s)∨0 exp(m2a), ∆m ≍ m(2s)∨0 exp(m2a) and Mn ≍ (log n/(log n)(2a+1+(2s)∨0)/(2a))1/(2a).

Then Assumption 3.1 is fulfilled and, under the additional assumptions of Theorem 3.1,
the adaptive estimator β̂bm reaches the optimal rate.

In cases [P-P] and [E-P], if 2a + 2s + 1 < 0, then the sequence δ can be taken of order
1. The collection of models must be reduced to {[√n], . . . , n} since Mn can be taken equal
to n. It appears then that the rate is parametric in this case. In fact, no model selection is
necessary in this case, a large m (m = n for instance) can be chosen.

Now, we have in mind to prepare the case where the degree of ill-posedness of the λj ’s,
and more precisely δm and Mn, are unknown. We propose hereafter a more intrinsic choice
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of δm, which does not require anything but the λj ’s (which can be estimated). In this spirit,
we can prove the following assertion.

Proposition 3.4. In cases [P-P] and [E-P] with a + s > 0 or in case [P-E], choose
∆m := max16j6m ωj/λj , κm := max16j6m(ωj)∨1/λj with (q)∨1 := max(q, 1) and

δm := m∆m

∣∣∣ log(κm ∨ (m + 2))

log(m + 2)

∣∣∣. (3.5)

Then Assumption 3.1 is fulfilled and, under the additional assumptions of Theorem 3.1, the
adaptive estimator β̂bm reaches the optimal rate.

4 A model selection approach: unknown degree of ill-posedness

In this section, the objective is the construction of a fully adaptive estimator which does
not depend on the sequence γ and λ. Nevertheless the resulting estimator still attains the
optimal rate in case the slope parameter belongs to some ellipsoid Fρ

γ and the sequence
of eigenvalues λ associated to the covariance operator of X has a given (unknown) rate of
decrease.

The configuration given in Proposition 3.4 is now the right reference and the choice that
the estimator is going to mimic. In particular, it is easily seen that there exists always a
constant Σ > 0 such that the sequences δ and △ given in Proposition 3.4 satisfy Assumption
3.1 (i). Observe that in this situation we have

∆m exp(− δm

6∆m
) = ∆m exp(−m

6

log(κm ∨ (m + 2))

log(m + 2)
)

6 (κm ∨ (m + 2)) exp(−m

6

log(κm ∨ (m + 2))

log(m + 2)
)

6 exp
(
−m

[1
6
− log(m + 2)

m

] log(κm ∨ (m + 2))

log(m + 2)

)

where the last term is obviously summable.

Assumption 4.1. Let λ denote the sequence of eigenvalues associated to the regressor X, let
δ and △ be the sequences defined in Proposition 3.4 and let γ and ω be sequences satisfying
Assumption 2.1 such that

(i) the sequence M := (Mn)n>1 given in Assumption 3.1 satisfies in addition to (3.2) also

log n

2n
> max

m>Mn

λm

m(ωm)∨1
for all n > 1;

(ii) the sequence m⋄ := (m⋄
n)n>1 given by 1/c 6 γm⋄

n
δm⋄

n
/(n ωm⋄

n
) 6 c for all n > 1 and

some c > 1 satisfies

min
16m6m⋄

n

λm

m(ωm)∨1
> 2(log n)/n for all n > 1;

(iii) the sequence N := (Nn)n>1 given by Nn := arg max
16N6n

{ max
16j6N

ωj/n 6 1}, n > 1, satisfies

Mn 6 Nn 6 n for all n > 1.

9



Remark 4.1. The last assumption is technical but satisfied in the interesting case. Note
that (i) and (ii) together imply m⋄

n 6 Mn for all n > 1. The condition (iii) is rather weak,
observe that the sequence ω is a-priori known and thus also the sequence of upper bounds
N . In particular, recall that in case ω ≡ 1 the Fω-risk corresponds to the L2-risk. If ωm 6 1
for all m > 1, then Fω-risk is weaker than the L2-risk and Nn = n. Only if the Fω-risk
is stronger than the L2-risk, that is ω is monotonically increasing, we choose Nn such that
ωNn ≍ n. Then it is not hard to see that in these situations (iii) is satisfied at least for
sufficiently large n. �

4.1 Definition of the estimator

We follow the model selection approach presented in the last section. Define

∆̂m := max
16j6m

ωj

λ̂j

1
{bλj>1/n}

and κ̂m := max
16j6m

(ωj)∨1

λ̂j

1
{bλj>1/n}

.

We shall refer to δm as defined in (3.5) and consider its estimator given by

δ̂m := m∆̂m

∣∣∣ log(κ̂m ∨ (m + 2))

log(m + 2)

∣∣∣.

If X ∈ X 4
η and E|Y/σY |4 6 η, then we define a random penalty function

p̂en(m) = 1920σ2
Y η

δ̂m

n
.

Moreover, we consider a random upper bound for the collection of models given by

M̂n := arg max
16M6Nn

{ λ̂M

M(ωM )∨1
> (log n)/n

}
. (4.1)

The adaptive estimator β̂bm is obtained from (1.4) by choosing the dimension parameter

m̂ := arg min
16m6cMn

{
Υ(β̂m) + p̂en(m)

}
(4.2)

We shall emphasize that the proposed estimator does not depend on an a-priori knowledge
of neither the sequence γ nor the sequence λ.

4.2 An upper bound.

In the next assertion we provide an upper bound of the fully adaptive estimator β̂bm by
assuming that the sequences λ, ω and γ satisfy Assumption 4.1.

Theorem 4.1. Assume an n-sample of (Y,X) satisfying (1.1). Suppose that E|Y/σY |4 6 η
and that X ∈ X 4

η is 1-periodic and second order stationary. Let Assumption 4.1 be satisfied.

Consider the estimator β̂bm defined in (1.4) with m̂ given by (4.2). If in addition X ∈ X 28
ξ

and E|Y/σY |28 6 ξ, then there exists a numerical constant C > 0 such that for all n > 1

sup
β∈Fρ

γ

{
E‖β̂bm − β‖2

ω

}
6 C

ωm⋄
n

γm⋄
n

(ρ + cη[ρE‖X‖2 + σ2])

+
K

n
[ρE‖X‖2 + σ2] [1 + δ1 + ρ][1 + (E‖X‖2)2],

10



where m⋄
n and c are defined in Assumption 4.1, K = K(Σ, η, ξ, δ1) is a constant only

depending on η, ξ, δ1 and Σ such that the sequences δ and △ given in Proposition 3.4 satisfy
Assumption 3.1.

Remark 4.2. Comparing the last assertion with Theorem 3.1, we see that under Assump-
tion 4.1 the proposed adaptive estimator obtains the same rate as in case of known degree
of ill-posedness. We only have to impose in addition slightly stronger moment conditions.�

It is easily verified that in all the examples discussed above the fully adaptive estimator
attains the optimal rate, which is summarized in the next assertion.

Corollary 4.2. In cases [P-P] and [E-P] with a + s > 0 or in case [P-E], Assumption
4.1 is fulfilled and, under the additional assumptions of Theorem 4.1, the fully adaptive
estimator β̂bm with m̂ given by (4.2) reaches the optimal rate.

Conclusion. Assuming a circular functional linear model we derive in this paper a fully
adaptive estimator of the slope function β or its derivatives, which attains the minimax
optimal rate of convergence. It is worth to note, that in this paper not only the penalty is
chosen randomly but also the collection of models. In this way the proposed estimator is
adaptive also with respect to the degree of ill-posedness of the underlying inverse problem.
We can thereby face both, the mildly and the severely ill-posed case.

It is not clear that the ideas in this paper can be straightforwardly adapted to treat the
case of noncircular functional models. We are currently exploring this issue.

A Appendix

A.1 Proof of Theorem 3.1

We begin by defining and recalling notations to be used in the proof. Given u ∈ L2[0, 1] we
denote by [u] the infinite vector of Fourier coefficients [u]j := 〈u, ϕj〉. In particular we use
the notations

[Xi]j = 〈Xi, ϕj〉, [β]j = 〈β, ϕj〉, σ2
Y = Var(Y ),

β̂m =

m∑

j=1

λ̂−1
j 1{λ̂j > 1/n}[ĝ]jϕj , β̃m :=

m∑

j=1

λ−1
j [ĝ]jϕj , βm :=

m∑

j=1

[β]jϕj ,

Φ̂u =
∑

j>1

λ̂−1
j 1{λ̂j > 1/n}[u]jϕj , Φ̃u :=

∑

j>1

λ−1
j [u]jϕj .

Given m > 1 we have then for all t ∈ Sm = span{ϕ1, . . . , ϕm}

〈t, β〉ω =

m∑

j=1

ωj[t]j[β]j =

m∑

j=1

ωj[t]j [g]j
λj

= 〈t, Φ̃g〉ω,

〈t, β̃m〉ω = 〈t, Φ̃bg〉ω =
1

n

n∑

i=1

Yi〈t, Φ̃Xi〉ω =
1

n

n∑

i=1

Yi

m∑

j=1

ωj

λj
[Xi]j [t]j ,

〈t, β̂m〉ω = 〈t, Φ̂bg〉ω =
1

n

n∑

i=1

Yi〈t, Φ̂Xi〉ω =
1

n

n∑

i=1

Yi

m∑

j=1

ωj

λ̂j

1{λ̂j > 1/n}[Xi]j [t]j . (A.1)
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Furthermore, define the event

ΩY,X := {|Y/σY | 6 n1/6, |[X]j/
√

λj | 6 n1/6, 1 6 j 6 Mn}

and denote its complement by Ωc
Y,X . Then consider the functions ĥ and f̂ with Fourier

coefficients given by

[ĥ]j :=
1

n

n∑

i=1

{Yi[Xi]j1ΩYi,Xi − E(Yi[Xi]j1ΩYi,Xi)},

[f̂ ]j :=
1

n

n∑

i=1

{Yi[Xi]j1Ωc
Yi,Xi

− E(Yi[Xi]j1Ωc
Yi,Xi

)}.

Obviously we have [ĝ]j − [g]j = [ĥ]j + [f̂ ]j and hence for all t ∈ Sm

〈t, Φ̂bg − β〉ω = 〈t, Φ̂bg − Φ̃g〉ω = 〈t, Φ̃bg − Φ̃g〉ω + 〈t, Φ̂bg − Φ̃bg〉ω
= 〈t, Φ̃bh

〉ω + 〈t, Φ̃ bf
〉ω + 〈t, Φ̂bg − Φ̃bg〉ω. (A.2)

We shall prove in the end of this section three technical Lemmas (A.2 - A.4) which are used
in the following steps of the proof.

Consider now the contrast Υ then by using (3.3) and (3.4) it follows that

Υ(β̂bm) + pen(m̂) 6 Υ(β̂m) + pen(m) 6 Υ(βm) + pen(m), ∀1 6 m 6 Mn,

which in particular implies by using the notations given in (A.1) that

‖β̂bm‖2
ω − ‖βm‖2

ω 6 2{〈β̂bm, Φ̂bg〉ω − 〈βm, Φ̂bg〉ω} + pen(m) − pen(m̂)

= 2〈β̂bm − βm, Φ̂bg〉ω + pen(m) − pen(m̂).

Rewriting the last estimate by using (A.2) we conclude that

‖β̂bm − β‖2
ω = ‖β − βm‖2

ω + ‖β̂bm‖2
ω − ‖βm‖2

ω − 2〈β̂bm − βm, β〉ω
6 ‖β − βm‖2

ω + pen(m) − pen(m̂) + 2〈β̂bm − βm, Φ̂bg − β〉ω
6 ‖β − βm‖2

ω + pen(m) − pen(m̂)

+ 2〈β̂bm − βm, Φ̃bh
〉ω + 2〈β̂bm − βm, Φ̃ bf

〉ω + 2〈β̂bm − βm, Φ̂bg − Φ̃bg〉ω. (A.3)

Consider the unit ball Bm := {f ∈ Sm : ‖f‖ω 6 1} and let m̂∨m := max(m̂,m). Combining
for τ > 0 and f ∈ Sm the elementary inequality

2|〈f, g〉ω | 6 2‖f‖ω sup
t∈Bm

|〈t, g〉ω | 6 τ‖f‖2
ω +

1

τ
sup
t∈Bm

|〈t, g〉ω |2

with (A.3) and β̂bm − βm ∈ S bm∨m ⊂ SMn we obtain

‖β̂bm − β‖2
ω 6 ‖β − βm‖2

ω + 6τ‖β̂bm − βm‖2
ω + pen(m) − pen(m̂)

+
2

τ
sup

t∈B bm∨m

|〈t, Φ̃bh
〉ω|2 +

2

τ
sup

t∈BMn

|〈t, Φ̃ bf
〉ω|2 +

2

τ
sup

t∈BMn

|〈t, Φ̂bg − Φ̃bg〉ω|2.
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Then, noting that pen(m ∨ m′) 6 pen(m) + pen(m′) and ‖β̂bm − βm‖2
ω 6 2‖β̂bm − β‖2

ω +
2‖βm − β‖2

ω, we get, together for τ = 1/16 and pen(m) = 192σ2
Y ηδm/n that

(1/4)‖β̂bm − β‖2 6 (7/4)‖β − βm‖2 + 32
(

sup
t∈B bm∨m

|〈t, Φ̃bh
〉ω|2 − (1/32) pen(m̂ ∨ m)

)
+

+ 32 sup
t∈BMn

|〈t, Φ̃ bf
〉ω|2 + 32 sup

t∈BMn

|〈t, Φ̂bg − Φ̃bg〉ω|2 + pen(m̂ ∨ m) + pen(m) − pen(m̂)

6 (7/4)‖β − βm‖2 + 32

Mn∑

m′=1

(
sup

t∈Bm′

|〈t, Φ̃bh
〉ω|2 − 6σ2

Y ηδm′/n
)

+

+ 32 sup
t∈BMn

|〈t, Φ̃ bf
〉ω|2 + 32 sup

t∈BMn

|〈t, Φ̂bg − Φ̃bg〉ω|2 + 2pen(m). (A.4)

Combining the last bound with (A.5) in Lemma A.2, (A.9) and (A.10) in Lemma A.3 we
conclude that there exist a numerical constant C and a constant K(Σ, η) depending on Σ
and η only, such that for all n > 1 and for all 1 6 m 6 Mn we have

E‖β̂bm−β‖2
ω 6 7‖β−βm‖2

ω +8pen(m)+
1

n
[Cξ(σ2

Y δ1+‖β‖2
ω}{1+(E‖X‖2)2}+σ2

Y K(Σ(6), η)].

Since (ω/γ) is monotonically non increasing we obtain in case β ∈ Fρ
γ that ‖β‖2

ω 6 ρ and
‖β − βm‖2

ω 6 (ωm/γm)ρ. Moreover, by using that X and ε are uncorrelated it follows
σ2

Y = Var(〈X,β〉)+ σ2
Var(ε) 6 E〈X,β〉2 + σ2 6 ‖β‖2

E‖X‖2 + σ2. Hence, σ2
Y 6 ρE‖X‖2 +

σ2 because γ is monotonically non decreasing. The result follows now by combining the
last estimates with the definition of the penalty, that is, pen(m) = 192σ2

Y ηδm/n, which
completes the proof of Theorem 3.1. �

Technical assertions.

The following lemmas gather technical results used in the proof of Theorem 3.1. We begin
by recalling an inequality due to Talagrand [1996], which can be found e.g. in Comte et al.
[2006].

Lemma A.1 (Talagrand’s Inequality). Let T1, . . . , Tn be independent T -valued random vari-
ables and ν∗

n(r) = (1/n)
∑n

i=1

[
r(Ti) − E[r(Ti)]

]
, for r belonging to a countable class R of

measurable functions. Then, for ε > 0,

E[sup
r∈R

|ν∗
n(r)|2 − 2(1 + 2ε)H2]+

6 C

(
v

n
exp(−K1ε

nH2

v
)) +

h2

n2C2(ε)
exp(−K2C(ε)

√
ε
nH

h
)

)

with K1 = 1/6, K2 = 1/(21
√

2), C(ε) =
√

1 + ε − 1 and C a universal constant and where

sup
r∈R

sup
t∈T

|r(t)| 6 h, E

[
sup
r∈R

|ν∗
n(r)|

]
6 H, sup

r∈R

1

n

n∑

i=1

Var(r(Ti)) 6 v.

Lemma A.2. Let λ be the eigenvalues associated to X ∈ X 4
η and E|Y/σY |4 6 η. Suppose

sequences δ, △ and M satisfying Assumption 3.1. Then there exists a constant K(Σ, η, δ1)
only depending on Σ, η and δ1 such that

Mn∑

m=1

E

(
sup
t∈Bm

|〈t, Φ̃bh
〉ω|2 − 6σ2

Y η
δm

n

)
+

6 K(Σ, η, δ1)
σ2

Y

n
for all n > 1. (A.5)
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Proof. Given m ∈ N and t ∈ Bm := {f ∈ Sm : ‖f‖ω 6 1} denote

vt(Y,X) := Y 1ΩY,X
〈t, Φ̃X〉ω =

m∑

j=1

ωj[t]j
λj

Y 1ΩY,X
[X]j ,

then it is easily seen that 〈t, Φ̃bh
〉ω = (1/n)

∑n
i=1{vt(Yi,Xi) − Evt(Yi,Xi)}. Below we show

the following three bounds

sup
t∈Bm

sup
y∈R,x∈L2[0,1]

|vt(y, x)| 6 σY n1/3δ1/2
m =: h, (A.6)

E sup
t∈Bm

|〈t, Φ̃bh
〉ω|2 6 σ2

Y η
δm

n
=: H2, (A.7)

sup
t∈Bm

1

n

n∑

i=1

Var(vt(Yi,Xi)) 6 σ2
Y η△m =: v. (A.8)

From Talagrand’s inequality (Lemma A.1) with ε = 1 we obtain by combining (A.6)-(A.8)

E

[
sup
t∈Bm

|〈t, Φ̃bh
〉ω|2 − 6H2

]
6 C

{ v

n
exp
(
−nH2

6v

)
+

h2

n2
exp
(
−c n H

h

)}

= C
{σ2

Y η△m

n
exp
(
− δm

6△m

)
+ σ2

Y

n2/3δm

n2
exp
(
−c η n1/6

)}

with c = (1 − 1/
√

2)/21 and some numerical constant C > 0. By using Assumption 3.1,
that is δm/n 6 δMn/n 6 δ1 and Mn/n 6 1, together with H2 = σ2

Y ηδm/n it follows that

Mn∑

m=1

E

[
sup
t∈Bm

|〈t, Φ̃bh
〉ω|2 − 6σ2

Y ηδm/n
]

6 C
{σ2

Y η

n

Mn∑

m=1

△m exp
(
− δm

6△m

)
+ σ2

Y δ1n
2/3 exp

(
−c η n1/6

)}

6 C
σ2

Y

n

{
η Σ + δ1 exp

(
−c η n1/6 + (5/3) log n

)}
,

where condition (3.1) in Assumption 3.1 implies the last inequality. It follows that there
exists a constant K(Σ, η, δ1) only depending on Σ, η and δ1 such that

Mn∑

m=1

E

[
sup
t∈Bm

|〈t, Φ̃bh
〉ω|2 − 6σ2

Y ηδm/n
]

6
σ2

Y

n
K(Σ, η, δ1), for all n > 1,

which proves the result.
Proof of (A.6). From supt∈Bm

|〈t, g〉ω |2 =
∑m

j=1 ωj[g]2j and the definition of ΩY,X follows

sup
y∈R,x∈L2[0,1],t∈Bm

|vt(y, x)|2 = sup
y∈R,x∈L2[0,1]

m∑

j=1

ωjσ
2
Y

λj
1Ωy,x

y2

σ2
Y

[x]2j
λj

6 σ2
Y n2/3

m∑

j=1

ωj

λj

and, hence the definition of δm implies (A.6).
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Proof of (A.7). Since (Yi,Xi), i = 1, . . . , n, form an n-sample of (Y,X) we have

E sup
t∈Bm

|〈t, Φ̃bh
〉ω|2 =

m∑

j=1

ωj

λ2
j

Var

(
1

n

n∑

i=1

Yi1ΩYi,Xi
[Xi]j

)
6

1

n

m∑

j=1

ωj

λ2
j

E
(
Y 1ΩY,X

[X]j
)2

and hence from E|Y/σY |4 6 η and X ∈ X 4
η it follows that

E sup
t∈BN

|〈t, Φ̃bh
〉ω|2 6

σ2
Y

n

m∑

j=1

ωj

λj

(
E|Y/σY |4E|[X]j/

√
λj |4

)1/2
6

σ2
Y

n
η

m∑

j=1

ωj

λj
.

Thereby, the definition of δm implies also (A.7).
Proof of (A.8). Consider z := (zj) with zj := (ωj[t]j/

√
λj)/(

∑m
j=1(ω

2
j [t]

2
j/λj))

1/2 and,

hence z ∈ S
m = {z ∈ R

m,
∑m

j=1 z2
j = 1}. Since (Yi,Xi), i = 1, . . . , n, form an n-sample of

(Y,X) it follows that

sup
t∈Bm

1

n

n∑

i=1

Var(vt(Yi,Xi)) 6 sup
t∈Bm

E

(
Y 1ΩY,X

m∑

j=1

ωj[t]j
λj

[X]j

)2
.

Thereby, from E|Y/σY |4 6 η and X ∈ X 4
η we conclude that

sup
t∈Bm

1

n

n∑

i=1

Var(vt(Yi,Xi)) 6 sup
t∈Bm

σ2
Y (E|Y/σY |4)1/2

(
E

∣∣∣
m∑

j=1

ωj[t]j√
λj

[X]j√
λj

∣∣∣
4)1/2

6 σ2
Y η1/2 sup

t∈Bm

m∑

j=1

(ω2
j [t]

2
j/λj) sup

z∈SN

(
E

∣∣∣
m∑

j=1

zj[X]j/
√

λj

∣∣∣
4)1/2

6 σ2
Y η sup

t∈Bm

m∑

j=1

(ω2
j [t]

2
j/λj) 6 σ2

Y η max
16j6m

ωj/λj .

Thus the definition of △m implies now (A.8), which completes the proof of Lemma A.2.

Lemma A.3. Let λ be the eigenvalues associated to X ∈ X 24
ξ and let E|Y/σY |24 6 ξ.

Suppose sequences δ, △ and M satisfying Assumption 3.1. Then there exists a numerical
constant C such that

E sup
t∈BMn

|〈t, Φ̃ bf
〉ω|2 6

√
2 ξ σ2

Y δ1/n and (A.9)

E sup
t∈BMn

|〈t, Φ̂bg − Φ̃bg〉ω|2 6 C
ξ

n
{σ2

Y δ1 + ‖β‖2
ω}{1 + (E‖X‖2)2} for all n > 1. (A.10)

Proof. Since (Yi,Xi), i = 1, . . . , n, form an n-sample of (Y,X) it follows that

E sup
t∈BMn

|〈t, Φ̃ bf
〉ω|2 =

Mn∑

j=1

ωj

λ2
j

Var

(
1

n

n∑

i=1

Y 1Ωc
Y,X

[X]j

)
6

Mn∑

j=1

ωj

λ2
jn

E

(
Y 1Ωc

Y,X
[X]j

)2
.

Thereby, from E|Y/σY |24 6 ξ and X ∈ X 24
ξ we conclude that

E sup
t∈BMn

|〈t, Φ̃ bf
〉ω|2 6

σ2
Y

n

Mn∑

j=1

ωj

λj

(
E|Y/σY |8E|[X]j/

√
λj |8

)1/4
P (Ωc

Y,X)1/2

6
σ2

Y ξ1/2

n

Mn∑

j=1

ωj

λj
P (Ωc

Y,X)1/2
6 σ2

Y ξ1/2 δMn

n
P (Ωc

Y,X)1/2
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where the last inequality follows from the property δm >
∑m

j=1
ωj

λj
for all m > 1. Hence by

using Assumption 3.1, that is δMn/n 6 δ1, we obtain

E sup
t∈BMn

|〈t, Φ̃ bf
〉ω|2 6 σ2

Y δ1ξ
1/2 P (Ωc

Y,X)1/2.

The estimate (A.9) follows now from P (Ωc
Y,X) 6 2ξ/n2, which can be realized as follows.

Since Ωc
Y,X = {|Y/σY | > n1/6} ∪ ⋃Mn

j=1{|[X]j/
√

λj | > n1/6} it follows by using Markov’s

inequality together with E|Y/σY |24 6 ξ and X ∈ X 24
ξ that

P (Ωc
Y,X) 6 P (|Y/σY | > n1/6) +

Mn∑

j=1

P (|[X]j/
√

λj | > n1/6)

6
E|Y/σY |18

n3
+

Mn∑

j=1

E|[X]j/
√

λj |18
n3

6
ξ

n3
(1 + Mn)

Thus, under Assumption 3.1, that is, Mn/n 6 1, we obtain P (Ωc
Y,X) 6 2ξ/n2, which

completes the proof of (A.9).
Proof of (A.10). Consider the decomposition

sup
t∈BMn

|〈t, Φ̂bg − Φ̃bg〉ω|2 =

Mn∑

j=1

ωj

λj

(λj

λ̂j

1{λ̂j > 1/n} − 1
)2
(

1

n

n∑

i=1

Yi
[Xi]j√

λj

)2

6 2

Mn∑

j=1

ωj

λj

(λj

λ̂j

− 1
)21{λ̂j > 1/n}

(
1

n

n∑

i=1

Yi
[Xi]j√

λj

−
√

λj[β]j

)2

+ 2

Mn∑

j=1

ωj[β]2j

(λj

λ̂j

− 1
)21{λ̂j > 1/n}

+ 2

Mn∑

j=1

ωj

λj

(
1

n

n∑

i=1

Yi
[Xi]j√

λj

−
√

λj[β]j

)2 1{λ̂j < 1/n}

+ 2

Mn∑

j=1

ωj[β]2j1{λ̂j < 1/n} (A.11)

where we bound each summand separately. First, from (A.16) and (A.19) in Lemma A.4
together with X ∈ X 24

ξ and E|Y/σY |24 6 ξ it follows that there exists a numeric constant
C > 0 such that

E

Mn∑

j=1

ωj

λj

(λj

λ̂j

− 1
)21{λ̂j > 1/n}

(
1

n

n∑

i=1

Yi
[Xi]j√

λj

−
√

λj [β]j

)2

6

Mn∑

j=1

ωj

λj

[
E|λj/λ̂j − 1|41{λ̂j > 1/n}

]1/2[
E

(
1

n

n∑

i=1

Yi
[Xi]j√

λj

−
√

λj[β]j

)4]1/2

6 C
σ2

Y ξ

n

Mn∑

j=1

ωj

nλj
{λ2

j + 1}; (A.12)
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E

Mn∑

j=1

ωj [β]2j

(λj

λ̂j

− 1
)21{λ̂j > 1/n} 6 C

ξ

n

Mn∑

j=1

ωj[β]2j{λ2
j + 1}. (A.13)

Furthermore, Assumption 3.1 (ii), i.e., 2/n 6 min{λj : 1 6 j 6 Mn}, implies P (λ̂j < 1/n) 6

P (λ̂j/λj < 1/2). Thereby, from (A.16) and (A.18) in Lemma A.4 together with X ∈ X 24
ξ

and E|Y/σY |24 6 ξ it follows that there exists a numeric constant C > 0 such that

E

Mn∑

j=1

ωj

λj

(
1

n

n∑

i=1

Yi
[Xi]j√

λj

−
√

λj [β]j

)2 1{λ̂j < 1/n}

6

Mn∑

j=1

ωj

λj

[
E

(
1

n

n∑

i=1

Yi
[Xi]j√

λj

−
√

λj [β]j

)4]1/2
P (λ̂j/λj < 1/2)1/2

6 C
σ2

Y ξ

n

Mn∑

j=1

ωj

nλj
; (A.14)

E

Mn∑

j=1

ωj [β]2j1{λ̂j < 1/n} 6

Mn∑

j=1

ωj[β]2jP (λ̂j/λj < 1/2) 6 C
ξ

n

Mn∑

j=1

ωj[β]2j . (A.15)

Combining the decomposition (A.11) and the bounds (A.12) - (A.15) we obtain

E sup
t∈BMn

|〈t, Φ̂bg − Φ̃bg〉ω|2 6 C
ξ

n

{Mn∑

j=1

ωj

nλj
σ2

Y {λ2
j + 2} +

Mn∑

j=1

ωj[β]2j{λ2
j + 2}

}
.

Therefore the properties E‖X‖2 > maxj>1 λj and δm >
∑m

j=1
ωj

λj
for all m > 1 imply

E sup
t∈BMn

|〈t, Φ̂bg − Φ̃bg〉ω|2 6 C
ξ

n
{σ2

Y δMn/n + ‖β‖2
ω}{(E‖X‖2)2 + 2}.

Thus (A.10) follows now from δMn/n 6 δ1 (Assumption 3.1), which completes the proof.

Lemma A.4. Suppose X ∈ X 4k
η4k

and E|Y/σY |4k 6 η4k, k > 1. Then for some numeric
constant Ck > 0 only depending on k we have

E

(
1

n

n∑

i=1

Yi
[Xi]j√

λj

−
√

λj[β]j

)2k

6 Ckσ
2k
Y η4k n−k, (A.16)

E|λ̂j/λj − 1|2k
6 Ckη4k n−k. (A.17)

If in addition w1 > 2 and w2 6 1/2, then we obtain

sup
j∈N

P (λ̂j/λj > w1) 6 Ckη4k n−k and sup
j∈N

P (λ̂j/λj < w2) 6 Ckη4k n−k. (A.18)

Moreover, if X ∈ X 12k
η12k

, k > 1, then for some numeric constant Ck > 0 only depending on
k we have

E|λj/λ̂j − 1|2k1{λ̂j > 1/n} 6 Ckη12k{λ2k
j + 1}n−k. (A.19)
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Proof. Since EY [X]j = λj [β]j the independence within the sample of (Y,X) implies by
using Theorem 2.10 in Petrov [1995] for some generic constant Ck that

E

(
1

n

n∑

i=1

Yi
[Xi]j√

λj

−
√

λj[β]j

)2k

6 C2kσ
2k
Y n−k

E|Y/σ|2k|[X]j/
√

λj |2k

6 Ckσ
2k
Y n−k

(
E|Y/σ|4k

E|[X]j/
√

λj|4k
)1/2

.

Then the last estimate together with X ∈ X 4k
η4k

and E|Y/σY |4k 6 η4k implies (A.16). Fur-
thermore, since {(|[Xi]j |2/λj − 1)i} are independent and identically distributed with mean

zero, it follows by applying again Theorem 2.10 in Petrov [1995] that E|λ̂j/λj − 1|2k 6

Ckn
−k

E||[X]j/
√

λj|2 − 1|2k. Thus, the condition X ∈ X 4k
η4k

implies (A.17).

Proof of (A.18). If w > 2 then P (λ̂j/λj > w) 6 P (|λ̂j/λj − 1| > 1). Thus applying
Markov’s inequality together with (A.17) implies the first bound in (A.18), while the second
follows in analogy.

Proof of (A.19). By using twice the elementary inequality |λ̂j/λj − 1|2k + |λ̂j/λj |2k >

1/22k−1 we conclude that

E|λj/λ̂j − 1|2k1{λ̂j > 1/n} 6 22k−1{E|λ̂j/λj − 1|4k
λ2k

j

λ̂2k
j

1{λ̂j > 1/n}+ E|λ̂j/λj − 1|2k}

6 24k−2λ2k
j n2k

E|λ̂j/λj − 1|6k + 24k−2
E|λ̂j/λj − 1|4k + 22k−1

E|λ̂j/λj − 1|2k}.

Thus, (A.19) follows from (A.17) since X ∈ X 12k
η12k

, which proves the lemma.

A.2 Proof of Proposition 3.3

Case [P-P] Since 2a + 2s + 1 > 0 it follows that the sequences δ,∆ and M with δm ≍
m2a+2s+1, ∆m ≍ m(2a+2s)∨0 and Mn ≍ n1/(2a+1+(2s)∨0), respectively, satisfy Assumption
3.1. Note that δMn/n 6 1, Mn/n 6 1, min16j6Mn λj > 2/n and ∀C > 0,

∑

m

△m exp(−Cδm/∆m) ≍
∑

m

m(2a+2s)∨0 exp(−Cm(2a+2s+1)∧1) < +∞.

Therefore we can apply Theorem 3.1 and hence Corollary 3.2. In particular, by using m⋄
n ≍

n1/(2a+2p+1), which satisfies γm⋄
n
δm⋄

n
/(nωm⋄

n
) ≍ 1, it follows that the adaptive estimator β̂bm

reaches the optimal rate ωm⋄
n
/γm⋄

n
≍ n−2(p−s)/(2p+2a+1).

Case [E-P] The sequences δ,∆,M are unchanged w.r.t. the previous case [P-P] and
hence Assumption 3.1 is still satisfied. From Corollary 3.2 follows now again that the
adaptive estimator β̂bm attains the optimal rate ωm⋄

n
/γm⋄

n
≍ n−1(log n)(2a+1+2s)/(2p) since

m⋄
n ≍ {log[n(log n)−(2a+1)/(2p)]}1/(2p) satisfies γm⋄

n
δm⋄

n
/(nωm⋄

n
) ≍ 1.

Case [P-E] Consider the sequences δ,∆ and M with δm = m2a+1+(2s)∨0 exp(m2a), ∆m =
m(2s)∨0 exp(m2a) and Mn = (log n/(log n)2a+1+(2s)∨0)/(2a))1/(2a) respectively. Then Assump-
tion 3.1 is satisfied, that is δMn/n 6 1, Mn/n 6 1, min16j6Mn λj > 2/n and ∀C > 0,

∑

m

∆m exp(−Cδm/∆m) 6
∑

m

m(2s)∨0 exp(m2a) exp(−Cm2a+1) < +∞.
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Moreover, γm⋄δm⋄/(nωm⋄) ≍ 1 implies m⋄
n ≍ (log n/(log n)(2a+2p+1)/(2a))1/(2a). Finally,

due to Corollary 3.2 the adaptive estimator β̂bm attains again the optimal rate ωm⋄/γm⋄ ≍
(log n)−(p−s)/a, which completes the proof of Proposition 3.3. �

A.3 Proof of Proposition 3.4

Let ∆m := max16j6m ωj/λj , κm := max16j6m(ωj)∨1/λj and δm := m∆m

∣∣∣ log(κm∨(m+2))
log(m+2)

∣∣∣ as

defined in (3.5). Note that | log(κm∨(m+2))/ log(m+2)| > 1 and hence δm >
∑m

j=1 ωj/λj .

Case [P-P] and [E-P]. Since a + s > 0 it is easily verified that ∆m ≍ m2a+2s, κm ≍
m2a+(2s)∨0 with | log(κm ∨ (m + 2))/ log(m + 2)| ≍ (2a + (2s)∨0) > 1 and hence, δm ≍
m1+2a+2s. Therefore, the result follows from Proposition 3.3 case [P-P] and [E-P] since
both sequences δ and ∆ are unchanged.

Case [P-E] We have ∆m ≍ m2s exp(m2a), κm ≍ m(2s)∨0 exp(m2a) with, for all m suf-

ficiently large, log(κm ∨ (m + 2))/ log(m + 2)| ≍ m2a (1+(2s)∨0(log m)m−2a)
log(m+2) and hence δm ≍

m1+2a+2s exp(m2a) (1+(2s)∨0(log m)m−2a)
log m . Then straightforward calculus shows that Assump-

tion 3.1 (i) is fulfilled. Moreover, consider the sequence M given in Assumption 3.1 (ii),

where Mn ≍ (log n (log log n)/(2a)

(log n)(1+2a+(2s)∨0)/(2a) )
1/(2a) = (log n)1/(2a)

(
1+o(1)

)
, then also Assumption

3.1 (ii) is satisfied (as in the proof of case [P-E] in Proposition 3.3). Due to Corollary
3.2 it remains to balance n ≍ γm⋄δm⋄/ωm⋄ ≍ (m⋄)1+2a+2p exp((m⋄)2a)/(log m⋄) which

implies m⋄
n ≍ (log n (log log n)/(2a)

(log n)(1+2a+2p)/(2a) )
1/(2a) = (log n)1/(2a)

(
1 + o(1)

)
. Hence, ωm⋄/γm⋄ ≍

(log n)(p−s)/a is the rate attained by the adaptive estimator β̂bm which is optimal and com-
pletes the proof of Proposition 3.4. �

A.4 Proof of Theorem 4.1

We begin by defining additional notations to be used in the proof. Consider sequences δ,
△, M and m⋄ satisfying Assumption 4.1 and the random upper bound M̂ defined in (4.1).
Denote by Ω := ΩI ∩ ΩII the event given by

ΩI :=

{
∀j ∈ {1, . . . ,Mn},

∣∣∣∣∣
1

λ̂j

− 1

λj

∣∣∣∣∣ <
1

2λj
and λ̂j > 1/n

}
,

ΩII := {m⋄
n 6 M̂n 6 Mn}.

It is easily seen that on ΩI we have for all 1 6 m 6 Mn

(1/2)∆m 6 ∆̂m 6 (3/2)∆m and (1/2)κm 6 κ̂m 6 (3/2)κm

and hence (1/2)[κm ∨ (m + 2)] 6 [κ̂m ∨ (m + 2)] 6 (3/2)[κm ∨ (m + 2)] which implies

(1/2)m∆m

( log[κm ∨ (m + 2)]

log(m + 2)

)(
1 − log 2

log(m + 2)

log(m + 2)

log(κm ∨ [m + 2])

)
6 δ̂m

6 (3/2)m∆m

( log(κm ∨ [m + 2])

log(m + 2)

)(
1 +

log 3/2

log(m + 2)

log(m + 2)

log(κm ∨ [m + 2])

)
,
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together with log(κm ∨ [m + 2])/log(m + 2) > 1 we get

δm/10 6 (log 3/2)/(2 log 3)δm 6 (1/2)δm[1 − (log 2)/ log(m + 2)] 6 δ̂m

6 (3/2)δm[1 + (log 3/2)/ log(m + 2)] 6 3δm.

Since pen(m) = 192σ2
Y ηδmn−1 and p̂en(m) = 1920σ2

Y ηδ̂mn−1 it follows on ΩI that pen(m) 6

p̂en(m) 6 30 pen(m) for all 1 6 m 6 Mn, and hence

(
pen(m⋄

n∨m̂)+p̂en(m⋄
n)−p̂en(m̂)

)1Ω 6

(
pen(m⋄

n)+pen(m̂)+p̂en(m⋄
n)−p̂en(m̂)

)1Ω

6 31 pen(m⋄
n)

by using 1 6 m̂ 6 M̂n and m⋄
n 6 M̂n 6 Mn. On the other hand, it is not hard to see that

on Ωc
I we have ∆̂m 6 n max16j6m ωj and κ̂m 6 n for all m > 1. From these properties we

conclude that for all 1 6 m 6 Mn

δ̂m 6 mn( max
16j6m

ωj)
log(n ∨ (m + 2))

log(m + 2)
6 mn( max

16j6m
ωj) log(n + 2), (A.20)

which implies p̂en(m⋄
n) 6 1920σ2

Y ηMn(max16j6Mn ωj)log(n + 2) and hence

(
pen(m⋄

n ∨ m̂) + p̂en(m⋄
n) − p̂en(m̂)

)1Ωc
I∩ΩII

6

(
pen(Mn) + 1920σ2

Y ηMn( max
16j6Mn

ωj)log(n + 2)
)1Ωc

I∩ΩII

6 1920σ2
Y η
(
δMn/n + Mn( max

16j6Mn

ωj)log(n + 2)
)1Ωc

I∩ΩII
(A.21)

We shall prove in the end of this section the technical Lemma A.5 which is used in the
following steps of the proof together with the technical Lemmas A.2 - A.4 above.

Consider now the decomposition

E‖β̂bm − β‖2
ω = E‖β̂bm − β‖2

ω1Ω + E‖β̂bm − β‖2
ω1Ωc

I∩ΩII
+ E‖β̂bm − β‖2

ω1Ωc
II

. (A.22)

Below we show that there exist a numerical constant C ′ > 0 and a constant K ′ = K ′(Σ, η, ξ, δ1)
only depending on Σ, η, ξ and δ1 such that for all n > 1 we have

E‖β̂bm − β‖2
ω1Ω 6 C ′

{
‖β − βm⋄

n
‖2

ω +
δm⋄

n

n
σ2

Y η +
K ′

n
σ2

Y [δ1 + ‖β‖2
ω ][1 + (E‖X‖2)2]

}

(A.23)

E‖β̂bm − β‖2
ω1Ωc

I∩ΩII
6 C ′

{
‖β − βm⋄

n
‖2

ω +
K ′

n
σ2

Y [δ1 + ‖β‖2
ω ][1 + (E‖X‖2)2]

}
(A.24)

E‖β̂bm − β‖2
ω1Ωc

II
6 C ′ ξ

n
[σ2

Y + ‖β‖2
ω][1 + E‖X‖2]. (A.25)

Since (ω/γ) is monotonically non increasing we obtain in case β ∈ Fρ
γ that ‖β‖2

ω 6 ρ and
‖β − βm⋄

n
‖2

ω 6 (ωm⋄
n
/γm⋄

n
)ρ. Moreover, we have σ2

Y 6 ρE‖X‖2 + σ2. From these properties
by combining the decomposition (A.22) and the estimates (A.23) - (A.25) we conclude that
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there exists a numerical constant C > 0 and a constant K = K(Σ, η, ξ, δ1) only depending
on Σ, η, ξ and δ1 such that for all n > 1

E‖β̂bm−β‖2
ω 6 C

{ωm⋄
n

γm⋄
n

ρ+
δm⋄

n

n
[ρE‖X‖2+σ2]η+

K

n
[ρE‖X‖2+σ2] [1+δ1+ρ][1+(E‖X‖2)2]

}
.

The result follows now from the definition of m⋄
n, that is, γm⋄

n
δm⋄

n
/(n ωm⋄

n
) 6 c.

Proof of (A.23). Observe that on Ω we have m⋄
n 6 M̂n 6 Mn. Thus, following line by

line the proof of (A.4) it is easily seen that

(1/4)‖β̂bm − β‖2
ω1Ω 6 (7/4)‖β − βm⋄

n
‖2

ω + 32

Mn∑

m=1

(
sup
t∈Bm

|〈t, Φ̃bh
〉ω|2 − 6σ2

Y ηδm/n
)

+

+32 sup
t∈BMn

|〈t, Φ̃ bf
〉ω|2 + 32 sup

t∈BMn

|〈t, Φ̂bg − Φ̃bg〉ω|2

+
(
pen(m⋄

n ∨ m̂) + p̂en(m⋄
n) − p̂en(m̂)

)1Ω

6 (7/4)‖β − βm⋄
n
‖2

ω + 32

Mn∑

m=1

(
sup

t∈Bm′

|〈t, Φ̃bh
〉ω|2 − 6σ2

Y ηδm/n
)

+

+32 sup
t∈BMn

|〈t, Φ̃ bf
〉ω|2 + 32 sup

t∈BMn

|〈t, Φ̂bg − Φ̃bg〉ω|2

+4pen(m⋄
n),

where the last inequality follows from (A.20). Combining the last bound with (A.5) in
Lemma A.2, (A.9) and (A.10) in Lemma A.3 we conclude that there exists a numerical
constant C ′ > 0 and a constant K ′ = K ′(Σ, η, ξ, δ1) depending on Σ, η, ξ, δ1 only such that
(A.23) for all n > 1 holds true.

Proof of (A.24). Note that on Ωc
I ∩ ΩII we have still m⋄

n 6 M̂n 6 Mn. Thus, by using
(A.21) rather than (A.20) it follows in analogy to (A.22) that

(1/4)‖β̂bm − β‖2
ω1Ωc

I∩ΩII
6 (7/4)‖β − βm⋄

n
‖2

ω + 32

Mn∑

m=1

(
sup
t∈Bm

|〈t, Φ̃bh
〉ω|2 − 6σ2

Y ηδm/n
)

+

+32 sup
t∈BMn

|〈t, Φ̃ bf
〉ω|2+32 sup

t∈BMn

|〈t, Φ̂bg − Φ̃bg〉ω|2+
(
pen(m⋄

n∨m̂)+p̂en(m⋄
n)−p̂en(m̂)

)1Ωc
I∩ΩII

6 (7/4)‖β − βm⋄
n
‖2

ω + 32

Mn∑

m=1

(
sup
t∈Bm

|〈t, Φ̃bh
〉ω|2 − 6σ2

Y ηδm/n
)

+

+ 32 sup
t∈BMn

|〈t, Φ̃ bf
〉ω|2 + 32 sup

t∈BMn

|〈t, Φ̂bg − Φ̃bg〉ω|2

+ 1920σ2
Y η
(
δMn/n + Mn( max

16j6Mn

ωj)log(n + 2)
)1Ωc

I∩ΩII
.

From the last bound together with (A.5) in Lemma A.2, (A.9) and (A.10) in Lemma A.3
we conclude that there exist a numerical constant C > 0 and a constant K = K(Σ, η, ξ, δ1)
depending on Σ, η, ξ and δ1 only such that for all n > 1 we have

E‖β̂bm − β‖2
ω1Ωc

I∩ΩII
6 C

{
‖β − βm⋄

n
‖2

ω +
K

n
σ2

Y [δ1 + ‖β‖2
ω][1 + (E‖X‖2)2]

+ σ2
Y η
(
n−1δMn + n−2Mn( max

16j6Mn

ωj)
)
n2log(n + 2)P (Ωc

I ∩ ΩII)
}

. (A.26)
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Since X ∈ X 24
ξ and Ωc

I ∩ ΩII ⊂ {∃j ∈ {1, . . . ,Mn} : |λj/λ̂j − 1| > 1/2 or λ̂j < 1/n} it

follows from (A.29) in Lemma A.29 that P (Ωc
I ∩ ΩII) 6 Cξ Mn n−6 for some numerical

constant C > 0. Moreover, due to Assumption 4.1 we have δMn/n 6 δ1, Mn/n 6 1 and
max16j6Mn ωj 6 max16j6Nn ωj 6 n. Combining the last estimates and (A.26) implies now
(A.24).

Proof of (A.25). Let β̆m :=
∑m

j=1[β]j1{λ̂j > 1/n}ϕj . Then it is not hard to see that

‖β̂m − β̆m‖2
ω 6 ‖β̂m′ − β̆m′‖2

ω for all m 6 m′ and ‖β̆m − β‖2
ω 6 ‖β‖2

ω . By using these

properties together with 1 6 m̂ 6 M̂n 6 Nn we conclude

E‖β̂bm − β‖2
ω1Ωc

II
6 2{E‖β̂bm − β̆bm‖2

ω1Ωc
II

+ E‖β̆bm − β‖2
ω1Ωc

II
}

6 2{E‖β̂Nn − β̆Nn‖2
ω1Ωc

II
+ ‖β‖2

ωP (Ωc
II)}.

Since X ∈ X 28
ξ and Ωc

II = {M̂n < m⋄
n} ∪ {M̂n > Mn} it follows from (A.30) and (A.31) in

Lemma A.5 that P (Ωc
II) 6 Cξn−6 for some numerical constant C > 0 and hence

E‖β̂bm − β‖2
ω1Ωc

II
6 2{E‖β̂Nn − β̆Nn‖2

ω1Ωc
II

+ Cξ ‖β‖2
ωn−6}. (A.27)

Moreover, from (A.16) and (A.17) in Lemma A.4 together with X ∈ X 28
ξ and E|Y/σY |28 6 ξ

it follows that there exists a numerical constant C > 0 such that

E‖β̂Nn − β̆Nn‖2
ω1Ωc

II
6 2n2

Nn∑

j=1

ωj

{
E([ĝ]j − λj[β]j)

21Ωc
II

+ E(λj[β]j − λ̂j [β]j)
21Ωc

II

}

6 2n2
{

max
16j6Nn

ωj

Nn∑

j=1

λj

[
E

(
1

n

n∑

i=1

Yi
[Xi]j√

λj

−
√

λj[β]j

)4]1/2
P (Ωc

II)
1/2

+ max
j>1

λj

Nn∑

j=1

ωj[β]2j [E(λ̂j/λj − 1)4]1/2P (Ωc
II)

1/2
}

6 Cξn2
{
n−4σ2

Y max
16j6Nn

ωj

∑

j>1

λj + n−4 max
j>1

λj‖β‖2
ω

}
. (A.28)

By combination of (A.27), (A.28) and E‖X‖2 =
∑

j>1 λj > maxj>1 λj we obtain

E‖β̂bm − β‖2
ω1Ωc

II
6 C ′

{
n−2σ2

Y ξ max
16j6Nn

ωjE‖X‖2 + ξ{1 + E‖X‖2}‖β‖2
ωn−2

}
,

for some numerical constant C ′ > 0. The estimate (A.25) follows now from max16j6Nn ωj 6

n (Assumption 4.1), which completes the proof of Theorem 4.1. �

Technical assertions.

The following lemma gathers technical results used in the proof of Theorem 4.1.

Lemma A.5. Suppose X ∈ X 4k
η4k

, k > 1, with associated sequence λ of eigenvalues. Let
M and m⋄ be sequences satisfying Assumption 4.1. Then there exist a numerical constant
Ck > 0 only depending on k such that for all n > 1 we have

P ({∃j ∈ {1, . . . ,Mn} : |λj/λ̂j − 1| > 1/2 or λ̂j < 1/n}) 6 Ckη4k Mn n−k, (A.29)

P (M̂n < m⋄
n) 6 Ckη4k n−k and (A.30)

P (M̂n > Mn) 6 Ckη4k n−k+1 for all n > 1. (A.31)
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Proof. Proof of (A.29). We start our proof with the observation that the event {|λj/λ̂j−1| >

1/2} can equivalently be written as {1 − λ̂j/λj > 1/3 or λ̂j/λj − 1 > 1}, and hence is a

subset of {|λ̂j/λj − 1| > 1/3}. Moreover, since λj > 2/n for all 1 6 j 6 Mn it follows that

{λ̂j < 1/n} ⊂ {|λ̂j/λj − 1| > 1/2}. Combining both estimates we conclude

P ({∃j ∈ {1, . . . ,Mn} : |λj/λ̂j − 1| > 1/2 or λ̂j < 1/n})

6

Mn∑

j=1

{P (|λ̂j/λj − 1| > 1/3) + P (|λ̂j/λj − 1| > 1/2)} 6 2

Mn∑

j=1

P (|λ̂j/λj − 1| > 1/3).

Thus applying Markov’s inequality together with (A.17) in Lemma A.4 implies (A.29).

Proof of (A.30). Due to the definition of M̂n given in (4.1) the event {M̂n < m⋄
n} is

a subset of {∀m ∈ {m⋄
n, . . . , n} : λ̂m/(ωm)∨1 < m(log n)/n} and hence P (M̂n < m⋄

n) 6

P (λ̂m⋄
n
/λm⋄

n
< 1/2) since min16m6m⋄

n
λm/[m(ωm)∨1] > 2(log n)/n (Assumption 4.1 (iii)).

Thereby, (A.30) follows from the second bound in (A.18) in Lemma A.17.

Proof of (A.31). Due to the definition (4.1) of M̂n for m > Mn the event {M̂n = m} is a

subset of {λ̂m/(ωm)∨1 > m(log n)/n} and hence P (M̂n > Mn) 6
∑Nn

j=Mn+1 P (λ̂m/λm > 2)
since 2maxm>Mn λm/[m(ωm)∨1] 6 (log n)/n (Assumption 4.1 (ii)). Thereby, the first bound
in (A.18) in Lemma A.17 together with Nn/n 6 1 (Assumption 4.1 (iv)) implies (A.31),
which completes the proof of Lemma A.5.

A.5 Proof of Corollary 4.2

First, note that in all three cases, the sequences δ,∆, M and m⋄ have been calculated in
the proof of Proposition 3.4. If in addition Assumption 4.1 holds true, then from Theorem
4.1 follows that the fully adaptive estimator attains the rate ωm⋄

n
/γm⋄

n
, which in the proof

of Proposition 3.4 has been confirmed to be optimal in all three cases. Therefore it only
remains to check (i)-(iii) of Assumption 4.1.

Case [P-P] In this case, we have Mn ≍ n1/(2a+1+(2s)∨0) and m⋄
n ≍ n1/(2a+2p+1). Then (i)

of Assumption 4.1 holds true, since min16j6Mn λj ≍ M−2a
n ≍ n−2a/(2a+1+(2s)∨0) > 2/n and

max
m>Mn

λm

m(ωm)∨1
≍ M−1−2a−(2s)∨0

n ≍ n−(2a+1+(2s)∨0)/(1+2a+(2s)∨0) 6 (log n)/(2n).

Moreover (ii) of Assumption 4.1 is satisfied by using that for all p > s

min
16m6m⋄

n

λm

m(ωm)∨1
≍ (m⋄

n)−1−2a−(2s)∨0 ≍ n−(2a+1+(2s)∨0)/(2p+1−2s+(2a+2s)∨0)
> 2(log n)/n.

Finally, consider (iii) of Assumption 4.1. It is easily verified that Nn ≍ n1/(1+(2s)∨0) which

satisfies max16m6Nn ωm 6 N
(2s)∨0
n ≍ n(2s)∨0/(1+(2s)∨0) 6 n and Mn ≍ n1/(2a+1+(2s)∨0) 6

Nn 6 n. Thereby also (iii) of Assumption 4.1 holds true.

Case [E-P]. We have Mn ≍ n1/(2a+1+(2s)∨0), m⋄
n ≍ {log[n(log n)−(2a+1)/(2p)]}1/(2p) and

Nn ≍ n1/(1+(2s)∨0). Then as in case [P-P] (i) and (iii) of Assumption 4.1 hold true since
Mn and Nn are unchanged. Furthermore, for all s ∈ R we have

min
16m6m⋄

n

λm

m(ωm)∨1
≍ (m⋄

n)−1−2a−(2s)∨0 ≍ (log n)−(2a+1+(2s)∨0)/(2p)
> 2(log n)/n,

which shows (ii) of Assumption 4.1.
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Case [P-E]. Here we have Mn ≍ (log n (log log n)/(2a)

(log n)(1+2a+(2s)∨0)/(2a) )
1/(2a) = (log n)1/(2a)(1 + o(1)),

m⋄
n ≍ (log n (log log n)/(2a)

(log n)(1+2a+2p)/(2a) )
1/(2a) = (log n)1/(2a)(1 + o(1)) and Nn ≍ n1/(1+(2s)∨0). It is

easily seen that (iii) of Assumption 4.1 is satisfied. Moreover, (i) of Assumption 4.1 holds

true, since min16j6Mn λj ≍ exp(−M2a
n ) ≍ (log n)(1+2a+(2s)∨0)/(2a)

n(log log n)/(2a) > 2/n and

max
m>Mn

λm

m(ωm)∨1
≍ M−1−(2s)∨0

n exp(−M2a
n ) ≍ (log n)

n(log log n)/(2a)
6 (log n)/(2n).

Finally, consider (ii) of Assumption 4.1 which is satisfied by using that for all p > s

min
16m6m⋄

n

λm

m(ωm)∨1
≍ (m⋄

n)−1−(2s)∨0 exp(−(m⋄
n)2a) ≍ (log n)(2a+2p−(2s)∨0)/(2a)

n (log log n)/(2a)
> 2(log n)/n,

which completes the proof of Corollary 4.2. �
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