Improved intermediate asymptotics for the heat equation - Archive ouverte HAL
Article Dans Une Revue Applied Mathematics Letters Année : 2011

Improved intermediate asymptotics for the heat equation

Résumé

This letter is devoted to results on intermediate asymptotics for the heat equation. We study the convergence towards a stationary solution in self-similar variables. By assuming the equality of some moments of the initial data and of the stationary solution, we get improved convergence rates using entropy / entropy-production methods. We establish the equivalence of the exponential decay of the entropies with new, improved functional inequalities in restricted classes of functions. This letter is the counterpart in a linear framework of a recent work on fast diffusion equations, see [Bonforte-Dolbeault-Grillo-Vazquez]. Results extend to the case of a Fokker-Planck equation with a general confining potential.
Fichier principal
Vignette du fichier
BBDE-15-7-2009-hal.pdf (98.71 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00409935 , version 1 (14-08-2009)

Identifiants

Citer

Jean-Philippe Bartier, Adrien Blanchet, Jean Dolbeault, Miguel Escobedo. Improved intermediate asymptotics for the heat equation. Applied Mathematics Letters, 2011, 24 (1), pp.76 - 81. ⟨10.1016/j.aml.2010.08.020⟩. ⟨hal-00409935⟩
446 Consultations
107 Téléchargements

Altmetric

Partager

More