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Abstract

This letter is devoted to results on intermediate asymptotics for the heat equation. We study the convergence towards
a stationary solution in self-similar variables. By assuming the equality of some moments of the initial data and of the
stationary solution, we get improved convergence rates using entropy/ entropy-production methods. We establish the
equivalence of the exponential decay of the entropies with new, improved functional inequalities in restricted classes
of functions. This letter is the counterpart in a linear framework of a recent work on fast diffusion equations, see [8].
Results extend to the case of a Fokker-Planck equation with ageneral confining potential.
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Consider theheat equationin the euclidean space,

∂u
∂t
= ∆u t > 0 , x ∈ R

d (1)

with an initial conditionu0 ∈ L1(Rd). By writing u = u+ − u− whereu+ andu− are respectively the positive and
negative parts ofu and solving (1) with initial data (u0)+ and (u0)−, we may reduce the problem to the case of a
nonnegative function, corresponding to a nonnegative initial conditionu0, without restriction. The heat equation
being linear, we can assume without loss of generality thatu0 is a probability measure so that in the sequel of this note
∫

Rd u0 dx = 1 =
∫

Rd u(t, x) dx for any t ≥ 0. Getting decay rates and even an asymptotic expansion for large values
of t is completely standard, see for instance [13]. However, a few details and some notations will be useful for later
purpose.

First of all, as a straightforward consequence of the expression of the Green function,G(t, x, y) := (4πt)−d/2 e−
|x−y|2

4t ,
any solutionu of (1) can be written asu(t, x) =

∫

Rd u0(y) G(t, x, y) dy and therefore uniformly decays likeO(t−d/2)
since, ast → ∞, u(t, x) ∼ G(t, x, 0). It is also classical to estimate the decay ofu(t, ·) −G(t, ·, 0) in variousLp(Rd)
norms. Such estimates are calledintermediate asymptoticsestimates. The point is to determine the first term of
an asymptotic expansion of the solution ast → ∞. For instance, as we shall see below, it can be proved that
‖u(t, ·) −G(t, ·, 0)‖L1(Rd) = O(t−1/2) ast→ ∞.

The entropy methodcan be used among various other approaches to obtain such an estimate. It relies on the
logarithmic Sobolev inequality and goes as follows. First consider the time-dependent rescaling

u(t, x) = R−d v
(

logR, x/R
)

with R= R(t) :=
√

1+ 2 t , t > 0 , x ∈ R
d . (2)
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If u is a solution of (1), thenv solves theFokker-Planck equation

∂v
∂t
= ∆v+ ∇ · (x v) (3)

with same initial conditionv(t = 0, ·) = u0. Let v∞(x) := (2π)−d/2 e−|x|
2/2 be the unique stationary solution of (3)

with mass 1, and definedµ := v∞ dx as the Gaussian measure. We denote byLp(Rd) andLp(Rd, dµ) the Lebesgue
spaces corresponding respectively to Lebesgue’s measure and to the Gaussian measure. Understanding the interme-
diate asymptotics foru amounts to study the convergence ofv to v∞, as t → ∞. Define theentropyby E1[w] :=
∫

Rd w logw dµ. Let v be a solution of (3) and definew(t, ·) := v(t, ·)/v∞, w0 := w(t = 0, ·). Then d
dt E1[w(t, ·)] =

−I1[w(t, ·)] whereI1 is theFisher informationdefined byI1[w] :=
∫

Rd w |∇ logw|2 dµ. Gross’logarithmic Sobolev
inequalityexactly amounts toE1[v/v∞] ≤ 1

2 I1[v/v∞] and so, it follows that

E1[w(t, ·)] ≤ E1[w0] e−2 t ∀ t ≥ 0 .

By theCsiszár-Kullback inequality, see for instance [17], we get‖v(t, ·) − v∞‖2L1(Rd)
≤ 1

4 E1[w(t, ·)] and deduce that

‖v(t, ·) − v∞‖L1(Rd) ≤
1
2

√

E1[w0] e−t ∀ t ≥ 0 .

Undoing the change of variables (2) and observing thatu∞(t, x) := R(t)−d v∞ (x/R(t)) = G(t + 1/2, ·, 0), we finally get

‖u(t, ·) − u∞(t, ·)‖L1(Rd) ≤
1
2

√

E1[w0]
1+ 2 t

∀ t ≥ 0 ,

which establishes the claimed estimate, namely:‖u(t, ·) −G(t, x, 0)‖L1(Rd) ≤ O
(

t−1/2
)

as t → ∞. Such an estimate
is quite classical. The above method is known as theBakry-Emery methodor entropy/ entropy-production method
and also provides a proof of the logarithmic Sobolev inequality. See [16, 3] for some references on this topic, in the
context of partial differential equations.

By combiningL1(Rd) andL∞(Rd) estimates using Hölder’s inequality, we get that

‖u(t, ·) −G(t, ·, 0)‖Lp(Rd) ≤ O
(

t−
1

2 p (1+(p−1)d)
)

as t→ ∞ .

In a L2(Rd) framework, a much more detailed description can be achieved using a spectral decomposition. Ifv is a
solution of (3), thenw = v/v∞ is a solution of theOrnstein-Uhlenbeck equation

∂w
∂t
= ∆w− x · ∇w (4)

with initial dataw0 = u0/v∞. Notice that
∫

Rd w0 dµ = 1 and, as a consequence,
∫

Rd w(t, ·) dµ = 1 for all t ≥ 0. Define
by (Hk)k∈Nd the sequence of Hermite type polynomials (see for instance [19]) acting onx = (x1, x2 . . . xd) ∈ R

d,
such thatHk(x) :=

∏d
j=1 hk j (x j) wherehn(y) := (−1)n (n!)−1/2 ey2/2 dn

dyn

(

e−y2/2), y ∈ R and k = (k1, ..., kd) ∈ N
d.

These functions provide an orthonormal family of eigenfunctions in L2(Rd, dµ) which spans the eigenspaces of the
Ornstein-Uhlenbeck operator, that is− (∆Hk − x · ∇Hk) = |k|Hk, where|k| := ∑d

j=1 k j . Up to a scaling, (hn)n∈N is the
usual family of Hermite polynomials onR.

If w0 satisfies the orthogonality condition
∫

Rd
w0 Hk dµ = 0 ∀ k ∈ N

d such that 0< |k| < n , (5)

then an improved rate of convergence follows, in the sense that

‖w(t, ·) − 1‖L2(Rd,dµ) ≤ e−n t ‖w0 − 1‖L2(Rd,dµ) ∀ t ≥ 0 .

If (5) initially holds, we indeed have
∫

Rd w(t, ·) Hk dµ = 0 for anyt ≥ 0 and anyk ∈ N
dsuch that 0< |k| < n. Then,

since d
dt‖w(t, ·) − 1‖2

L2(Rd,dµ)
= −2

∫

Rd |∇w(t, ·)|2 dµ, the conclusion holds using the following result.
2



Proposition 1 (Improved Poincaŕe inequality). Assume that w∈ L2(Rd) is such that
∫

Rd w dµ = 1 and the condition
∫

Rd w Hk dµ = 0 holds for any k∈ N
d such that0 < |k| < n. Then the following inequality holds, with optimal constant:

‖w− 1‖2L2(Rd,dµ) ≤
1
n
‖∇w‖2L2(Rd,dµ) .

The proof is no more than a straightforward rewriting of the Rayleigh quotient‖∇w‖2
L2(Rd,dµ)

/‖w− 1‖2
L2(Rd, dµ)

under
the appropriate orthogonality condition. Notice that polynomialsHk are of degree|k| so that the Condition (5) can be
rephrased in terms of moment conditions. See [13, 14] for further results in this direction.

It is natural to search for improved estimates of convergence also inLp(Rd) with p ∈ [1, 2) by looking for improved
functional inequalities whenever condition (5) is fulfilled. We may for instance quote [2] in which improvements on
the constant, but not on the rates, have been achieved forp = 1.

For anyp ∈ (1, 2], consider thegeneralized entropy

Ep[w] :=
∫

Rd

wp − 1
p− 1

dµ .

This definition is consistent with the definition ofE1 because, under the condition
∫

Rdw dµ = 1,Ep[w] =
∫

Rd
wp−w
p−1 dµ→

E1[w] as p → 1. The functionalEp controls the convergence inLp(Rd, dµ) using a generalized Csiszár-Kullback
inequality. In [9, 4], it has been proved that‖w − 1‖2

Lp(Rd, dµ)
≤ 1

p 22/p max
{ ‖w‖2−p

Lp(Rd,dµ)
, 1
}Ep[w], for any p ∈ [1, 2].

Since‖w‖L1(Rd,dµ) = 1, we have 1≤ ‖w‖p
Lp(Rd,dµ)

= 1+ (p− 1)Ep[w], and so

‖w− 1‖Lp(Rd,dµ) ≤ Ap

(

Ep[w]
)

with Ap(s) :=
21/p

√
p

[

1+ (p− 1) s
]1−p/2√

s . (6)

Next, assume that
∫

Rd w Hk dµ = 0 for anyk ∈ N
d such that 0< |k| < n and consider thegeneralized Poincaré

inequalities,with p ∈ [1, 2], namely

Ep[w] ≤ Bn,p

∫

Rd

∣

∣

∣∇wp/2
∣

∣

∣

2
dµ ∀ w ∈ H1(Rd, dµ) . (7)

Such inequalities have been established forn = 1 by W. Beckner in [5] with optimal constantB1,p = 2/p for the
Gaussian measure. By the same method, it has been shown in [1]that for a larger class of measuresdµ, if (7) holds
for p = 1 andp = 2, for some positive constantsBn,1 andBn,2 respectively, then it also holds for anyp ∈ (1, 2) with

Bn,p =
1

p−1

[

1− ((2− p)/p)Bn,1/(2Bn,2)
]

Bn,2 . (8)

By the logarithmic Sobolev inequality and the improved Poincaré inequality, see Proposition 1, we know thatBn,1 ≤ 2
andBn,2 = 1/n. Hence it follows thatBn,p ≤ 1

p−1

[

1− ((2− p)/p)n ] 1
n. On the other hand, as in [3], ifw is a solution

of (4), then
d
dt
Ep[w(t, ·)] = −4

p

∫

Rd

∣

∣

∣∇wp/2
∣

∣

∣

2
dµ . (9)

If (5) is satisfied, we conclude using (7) and (6) that any solution of (4) with initial dataw0 satisfies

Ep[w(t, ·)] ≤ Ep[w0] e−2λ(n,p) t and ‖w(t, ·) − 1‖Lp(Rd,dµ) ≤ Ap

(

Ep[w0]
)

e−λ(n,p) t ∀ t ≥ 0 ,

with λ(n, p) := 2
p n (p− 1)

[

1− ((2− p)/p)n]−1. The last estimate holds because, for anyt ≥ 0,

‖w(t, ·) − 1‖Lp(Rd,dµ) ≤ Ap

(

Ep[w(t, ·)]
)

≤ Ap

(

Ep[w0] e−2λ(n,p) t
)

≤ Ap

(

Ep[w0]
)

e−λ(n,p) t

Notice thatλ(1, p) = 1 andλ(n, 2) = n. Nothing is gained asp→ 1, since limp→1 λ(n, p) = 1 is independent ofn.
On the other hand, by Hölder’s inequality, we have for free that‖w− 1‖Lp(Rd,dµ) ≤ ‖w− 1‖L2(Rd,dµ). Hence, ifw

is a solution of (4) with initial dataw0, we know that‖w(t, ·) − 1‖Lp(Rd,dµ) ≤ e−n t ‖w0 − 1‖L2(Rd,dµ) ast → ∞, for any
3



p ∈ [1, 2], if (5) is satisfied. By interpolation, we recover the rates of [13, 14]. However, this is not satisfactory since
neither‖w0−1‖Lp(Rd,dµ) norEp[w0] are involved in the right hand side of the above estimate.

Consider first the casep = 1. An alternative approach is suggested by the method of [7, 6], which applies to
the fast diffusion equation∂u

∂t = ∆um for m < 1. By assuming some uniform bound on the initial data, which is
preserved along the evolution, it is possible to relate the asymptotic rate for intermediate asymptotics with the spec-
trum of the linearized operator. We can indeed observe that‖w0 − 1‖2

L2(Rd,dµ)
≤ ‖w0 − 1‖L1(Rd,dµ) ‖w0 − 1‖L∞(Rd, dµ) ≤

1
2

√
E1[w0] ‖w0 − 1‖L∞(Rd, dµ) using Hölder’s inequality and the Csiszár-Kullback inequality. This proves that

‖w(t, ·) − 1‖2L1(Rd,dµ) ≤
1
2 ‖w0 − 1‖L∞(Rd,dµ)

√

E1[w0] e−n t ast→ ∞

if (5) is satisfied initially. Still, this provides neither an estimate of
∫

Rd w(t, ·) logw(t, ·) dµ nor a functional inequality
which improves upon the logarithmic Sobolev inequality. Toprove such an inequality, we keep following the strategy
of [6]. A simple but key idea is to observe that the functions defined for anyp ∈ [1, 2] by hp(0) = 1, hp(1) = p/2 and,
for anys ∈ (0, 1)∪(1,∞) by hp(s) := [sp − 1− p (s− 1)]/[(p−1) |s−1|2] if p > 1,h1(s) := [s log s− (s− 1)]/|s− 1|2,
are continuous, nonnegative, decreasing onR

+ and achieve their maximum at 0. Define onL∞(Rd) the functional

Hp[w] := ‖w‖2−p
L∞(Rd)

sup
x∈Rd

hp(w(x)) = ‖w‖2−p
L∞(Rd)

hp

(

inf
x∈Rd

w(x)
)

.

Theorem 2 (Improved logarithmic Sobolev inequality). Assume that w∈ L∞+ (Rd) is such that
∫

Rd w dµ = 1 and

satisfies the condition
∫

Rd w Hk dµ = 0 for any k∈ N
d such that0 < |k| < n. Then the following inequality holds, with

optimal constant:
∫

Rd
w logw dµ ≤ H1[w]

n

∫

Rd

|∇w|2
w

dµ .

Proof. We may indeed observe that by the Poincaré inequality and using the definition ofH1, we get

∫

Rd

|∇w|2
w

dµ ≥ 1
‖w‖L∞(Rd)

∫

Rd
|∇w|2 dµ ≥ n

‖w‖L∞ (Rd)

∫

Rd
|w− 1|2 dµ ≥ n

H1[w]

∫

Rd
w logw dµ .

The optimality of the constant can be checked by a lengthy butelementary computation using the functionswk
ε :=

Hk(x) χ
(

xε1/(2n)) + Ck
ε for some smooth truncation functionχ such that 0≤ χ ≤ 1, χ ≡ 1 on B(0, 1) andχ ≡ 0 in

R
d \ B(0, 2). Here fork ∈ N

d is such that|k| = n and the constantCk
ε is chosen so that

∫

Rd wk
ε dµ = 1. �

As a consequence of the Maximum Principle applied to the heatequation (1) and the fact that tou0 = v∞ corre-
sponds a self-similar solution of (1), namelyu(t, x) = G(t + 1

2 , x, 0), we have the estimate

H1[w(t, ·)] ≤ H1[w0] ∀ t ≥ 0 .

By applying Theorem 2, we obtain a new result of decay forE1[w(t, ·)] with a constant which is exactlyE1[w0], to the
price of a rate which is less than 2n.

Corollary 3 (Improved decay rate of the entropy). Let w be a solution of(4) with a nonnegative bounded initial
data w0 ∈ L1(Rd, dµ) such that

∫

Rd w0 dµ = 1 and (5) is satisfied. Then

E1[w(t, ·)] ≤ E1[w0] e−n t/H1[w0] ∀ t ≥ 0 .

This result is actually equivalent to Theorem 2, as follows by differentiating the above inequality att = 0 (for which
equality is trivially satisfied) and using the fact that−

∫

Rd |∇w0|2/w0 dµ = d
dt E1[w(t, ·)] |t=0 ≤ E1[w0] d

dt e−n t/H1[w0]
|t=0.

What we have achieved is a global, improved exponential decay of the entropyE1 in a restricted class of func-
tions. To simplify even further, for anyε ∈ (0, 1) and n ∈ N

∗, consider the setXn
ε := {w ∈ L1(Rd, dµ) :

4



1 − ε ≤ w ≤ 1 + ε a.e. and the condition
∫

Rd w Hk dµ = 0 holds for anyk ∈ N
d such that0 < |k| < n }, which is ap-

propriate to handle the optimality case corresponding toε → 0+. The best constant in Theorem 2 is indeed asymp-
totically equivalent to the sharp rate of convergence in Corollary 3, in the sense that limε→0+ infw∈Xn

ε
n/H1[w] =

limε→0+ n/[(1 + ε) h(1− ε)] = 2n.

For simplicity, we have considered only the casep = 1, but the method also applies to anyp ∈ (1, 2). We
obtain an improved version of (7) under the restriction thatw ∈ L1(Rd, dµ) is bounded nonnegative and the condition
∫

Rd w Hk dµ = 0 holds for anyk ∈ N
d such that 0< |k| < n. With Bn,1 = 4H1[w]/n andBn,2 = 1/n, we get

Bn,p ≤ K [n, p,w] := (n (p− 1))−1
[

1− ((2− p)/p)2H1[w]
]

by (8). Using the entropy/ entropy-production identity (9),
the fact thatK [n, p,w(t, ·)] ≤ K [n, p,w0] and the generalized Csiszár-Kullback inequality (6), weobtain

Ep[w(t, ·)] ≤ Ep[w0] e−
4 t

pK [n,p,w0] and ‖w− 1‖Lp(Rd,dµ) ≤ Ap

(

Ep[w0]
)

e−
2 t

pK [n,p,w0] ∀ t ≥ 0 . (10)

Alternatively, an elementary computation as in the proof ofTheorem 2 gives a similar result:

4
p2

∫

Rd

∣

∣

∣∇wp/2
∣

∣

∣

2
dµ =

∫

Rd
wp−2 |∇w|2 dµ ≥ 1

‖w‖2−p
L∞ (Rd)

∫

Rd
|∇w|2 dµ ≥ n

‖w‖2−p
L∞ (Rd)

∫

Rd
|w− 1|2 dµ ≥ n

Hp[w]
Ep[w]

if
∫

Rd w dµ = 1 and the condition
∫

Rd w Hk dµ = 0 holds for anyk ∈ N
d such that 0< |k| < n. This proves that

Ep[w] ≤ 4
p2

Hp[w]

n

∫

Rd

∣

∣

∣∇wp/2
∣

∣

∣

2
dµ .

Using (9) and (6), this proves that any solution of (4) with initial data inw0 ∈ L1 ∩ L∞(Rd, dµ) satisfies

Ep[w(t, ·)] ≤ Ep[w0] e−n p t/Hp[w0] and ‖w− 1‖Lp(Rd,dµ) ≤ Ap

(

Ep[w0]
)

e−n p t/(2Hp[w0]) ∀ t ≥ 0 . (11)

Comparing the rates of (10) and (11) is a natural question. Inthe limit ε→ 0, infw∈Xn
ε
Hp[w] ∼ supw∈Xn

ε
Hp[w] → p/2

and it follows that limε→0
4

pK [n,p,w0] =
4
p n (p − 1)/[1 − ((2 − p)/p)p] < 2n = limε→0

n p t
Hp[w0] . Hence, at least in the

regimeε → 0, (11) is a better estimate in terms of rates than (10). Undoing the change of variables (2), we have
achieved a detailed result on improvedu0.

Corollary 4 (Improved intermediate asymptotics for the heat equation). Let p ∈ [1, 2] and assume that u0 is a
probability measure such that w0 = u0/v∞ is bounded and satisfies the condition

∫

Rd u0 Hk dx= 0 for any k∈ N
d such

that0 < |k| < n. If u is the solution of(1) with initial condition u0, then

‖u(t, ·) − u∞(t, ·)‖Lp(Rd) ≤ (2π)−
d
2 (1− 1

p )Ap

(

Ep[w0]
)

(1+ 2 t)−
n p

4Hp[w0] −
d
2 (1− 1

p ) ∀ t ≥ 0 .

The proof relies on the remark that‖u(t, ·) − u∞(t, ·)‖Lp(Rd) ≤ ‖u∞(t, ·)‖1−
1
p

L∞(Rd)
‖w(t, ·) − 1‖Lp(Rd, dµ) whereu∞(t, ·) :=

G(t + 1/2, ·, 0). The conclusion holds using‖u∞(t, ·)‖L∞(Rd) = (2πR2)−d/2 with R=
√

1+ 2 t.

Up to now, we have considered the simple case of the harmonic potential,V(x) = 1
2 |x|2. As in [1], the previous

results can be extended to more general potentials as follows. ConsiderV ∈W1,2
loc∩W2,2

loc (Rd) such that
∫

Rd e−V(x)dx= 1,
and define the probability measuredµ(x) := e−V(x)dx in R

d, which generalizes the Gaussian measure. Under the above
conditions onV, the logarithmic Sobolev inequality holds (resp. (7) forp = 1) for some positive constant (resp. for
B1,1 > 0). The Ornstein-Uhlenbeck operatorN := −∆ + ∇V · ∇ is essentially self-adjoint onL2(dµ), has a non-
degenerate eigenvalueλ0 = 0 and a spectral gapλ1 > 0. According to [18, Theorem 2.1],N has a pure point spectrum
without accumulation points. Since limk→∞ λk = ∞, then by [15, Theorem XIII.64], the eigenfunctions ofN form a
complete basis ofL2(Rd, dµ). We shall denote the eigenvalues byλk, k ∈ N, and byEk the corresponding eigenspaces.

Theorem 2 adapts without changes. Assume thatw ∈ L∞+ (Rd) is such that
∫

Rd w dµ = 1. Then

∫

Rd
w logw dµ ≤ H1[w]

λn

∫

Rd

|∇w|2
w

dµ

5



under the orthogonality condition:w ∈
(

⋃n−1
k=1 Ek

)⊥
, that is

∫

Rd w fk dµ = 0 for any fk ∈ Ek, k = 1, 2,. . .n− 1. Next,
consider the solutionw of the Ornstein-Uhlenbeck equation

∂w
∂t
= −N w = ∆w− ∇V · ∇w , (12)

with initial conditionw0 ∈
(

⋃n−1
k=1 Ek

)⊥ ∩ L∞(Rd) is such that
∫

Rd w0 dµ = 1. With the same definition as above forEp,
for any solution of (12) with initial dataw0, (11) is now replaced by

Ep[w(t, ·)] ≤ Ep[w0] e−λn p t/Hp[w0] and ‖w− 1‖Lp(Rd,dµ) ≤ Ap

(

Ep[w0]
)

e−λn p t/ (2Hp[w0]) ∀ t ≥ 0 .

Let us conclude this letter by some comments and open questions. It is standard in entropy/ entropy-production
methods that determining sharp rates of convergence in an evolution equation is equivalent to finding sharp constants in
functional inequalities, as we have seen in the case of the heat equation: the rate of convergence inL2(Rd, dµ) is given
by the Poincaré inequality, while the rate of convergence in entropy, which controls theL1(Rd, dµ) norm, is related
with the logarithmic Sobolev inequality. This is also true for nonlinear diffusion equations, see for instance [12]. In
this case, a breakthrough came from the observation that uniform norms can also be used, see [10, 7, 6], to the price of
a restricted functional framework. This allows to relate nonlinear quantities of entropy type with spectral properties of
the linearized problem, in an appropriate functional spaceand, again, to relate sharp rates with best constants, see [8].
As long as nonlinear evolution problems are concerned, onlya few invariant quantities are usually available: the mass
and the position of the center of mass of the solution, for instance. In linear evolution problems, we can impose an
arbitrary number of orthogonality conditions, which are preserved along the evolution. Improved rates of convergence
are then expected, even when measured with nonlinear quantities like the entropy. Various attempts have been done,
see for instance [2], but the question has been left open for many years. Such ideas have been partially explored by
R.J. McCann, including in the linear case (see [11]), based on considerations on an appropriate Hessian matrix. Our
approach provides a simpler and elementary answer under restrictions which are natural in view of [6]. It also raises a
number of questions concerning the optimality of the new functional inequalities from a variational point of view, the
convergence of minimizing sequences and the symmetry of theeventual minimizers.
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matical Sciences, 5(4):971–979, 2007.

[2] A. Arnold, J. A. Carrillo, and C. Klapproth. Improved entropy decay estimates for the heat equation.J. Math. Anal. Appl., 343(1):190–206,
2008.

[3] A. Arnold, P. Markowich, G. Toscani, and A. Unterreiter.On convex Sobolev inequalities and the rate of convergence to equilibrium for
Fokker-Planck type equations.Comm. Partial Differential Equations, 26(1-2):43–100, 2001.

[4] J.-P. Bartier, J. Dolbeault, R. Illner, and M. Kowalczyk. A qualitative study of linear drift-diffusion equations with time-dependent or
degenerate coefficients.Math. Models Methods Appl. Sci., 17(3):327–362, 2007.
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