The use of Lorentz microscopy for the determination of magnetic reversal mechanism of exchange-biased Co30Fe70/NiMn bilayer - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of Magnetism and Magnetic Materials Année : 2009

The use of Lorentz microscopy for the determination of magnetic reversal mechanism of exchange-biased Co30Fe70/NiMn bilayer

Résumé

Lorentz transmission electron microscopy (LTEM) combined with in-situ magnetizing experiments is a powerful tool for the investigation of the magnetization of the reversal process at the micron scale. We have implemented this tool on a conventional transmission electron microscope (TEM) to study the exchange anisotropy of a polycrystalline Co35Fe65/NiMn bilayer. Semi-quantitative maps of the magnetic induction were obtained at different field values by the differential phase contrast (DPC) technique adapted for a TEM (SIDPC). The hysteresis loop of the bilayer has been calculated from the relative intensity of magnetic maps. The curve shows the appearance of an exchange-bias field reveals with two distinct reversal modes of the magnetization: the first path corresponds to a reversal by wall propagation when the applied field is parallel to the anisotropy direction whereas the second is a reversal by coherent rotation of magnetic moments when the field is applied antiparallel to unidirectional anisotropy direction.
Fichier principal
Vignette du fichier
JMMM.pdf (1.45 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00403959 , version 1 (15-07-2009)

Identifiants

Citer

Aurélien Masseboeuf, Christophe Gatel, Pascale Bayle-Guillemaud, Yann Lamy, Bernard Viala. The use of Lorentz microscopy for the determination of magnetic reversal mechanism of exchange-biased Co30Fe70/NiMn bilayer. Journal of Magnetism and Magnetic Materials, 2009, 321, pp.3080-3083. ⟨10.1016/j.jmmm.2009.05.011⟩. ⟨hal-00403959⟩
135 Consultations
253 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More