RECM: Relational Evidential c-means algorithm - Archive ouverte HAL
Article Dans Une Revue Pattern Recognition Letters Année : 2009

RECM: Relational Evidential c-means algorithm

Résumé

A new clustering algorithm for proximity data, called RECM (relational evidential c-means) is presented. This algorithm generates a credal partition, a new clustering structure based on the theory of belief functions, which extends the existing concepts of hard, fuzzy and possibilistic partitions. Two algorithms, EVCLUS (Evidential Clustering) and ECM (evidential c-means) were previously available to derive credal partitions from data. EVCLUS was designed to handle proximity data, whereas ECM is a direct extension of fuzzy clustering algorithms for vectorial data. In this article, the relational version of ECM is introduced. It is compared to EVCLUS using various datasets. It is shown that RECM provides similar results to those given by EVCLUS. However, the optimization procedure of RECM, based on an alternate minimization scheme, is computationally much more efficient than the gradient-based procedure used in EVCLUS.
Fichier principal
Vignette du fichier
recm_v4.pdf (394.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00400273 , version 1 (03-07-2009)

Identifiants

Citer

Marie-Hélène Masson, Thierry Denoeux. RECM: Relational Evidential c-means algorithm. Pattern Recognition Letters, 2009, 30, pp.1015-1026. ⟨10.1016/j.patrec.2009.04.008⟩. ⟨hal-00400273⟩
110 Consultations
318 Téléchargements

Altmetric

Partager

More