A note on maximal solutions of nonlinear parabolic equations with absorption - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2011

A note on maximal solutions of nonlinear parabolic equations with absorption

Résumé

If $\Omega$ is a bounded domain in $\mathbb R^N$ and $f$ a continuous increasing function satisfying a super linear growth condition at infinity, we study the existence and uniqueness of solutions for the problem (P): $\partial_tu-\Delta u+f(u)=0$ in $Q_\infty^\Omega:=\Omega\times (0,\infty)$, $u=\infty$ on the parabolic boundary $\partial_{p}Q$. We prove that in most cases, the existence and uniqueness is reduced to the same property for the associated stationary equation in $\Omega$.
Fichier principal
Vignette du fichier
Max-Sol-Parab.pdf (174.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00390967 , version 1 (03-06-2009)
hal-00390967 , version 2 (04-02-2011)

Identifiants

Citer

Laurent Veron. A note on maximal solutions of nonlinear parabolic equations with absorption. 2011. ⟨hal-00390967v2⟩
122 Consultations
143 Téléchargements

Altmetric

Partager

More