Recent Results on the Periodic Lorentz Gas - Archive ouverte HAL
Chapitre D'ouvrage Année : 2012

Recent Results on the Periodic Lorentz Gas

Résumé

The Drude-Lorentz model for the motion of electrons in a solid is a classical model in statistical mechanics, where electrons are represented as point particles bouncing on a fixed system of obstacles (the atoms in the solid). Under some appropriate scaling assumption --- known as the Boltzmann-Grad scaling by analogy with the kinetic theory of rarefied gases --- this system can be described in some limit by a linear Boltzmann equation, assuming that the configuration of obstacles is random [G. Gallavotti, [Phys. Rev. (2) {\bf 185} (1969), 308]). The case of a periodic configuration of obstacles (like atoms in a crystal) leads to a completely different limiting dynamics. These lecture notes review several results on this problem obtained in the past decade as joint work with J. Bourgain, E. Caglioti and B. Wennberg.
Fichier principal
Vignette du fichier
LorentzGasLect.pdf (582.31 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00390895 , version 1 (03-06-2009)
hal-00390895 , version 2 (26-06-2009)

Identifiants

Citer

François Golse. Recent Results on the Periodic Lorentz Gas. Xavier Cabré, Juan Soler. Nonlinear Partial Differential Equations, Birkhäuser, pp.39-99, 2012, Advanced Courses in Mathematics CRM Barcelona, 978-3-0348-0190-4. ⟨10.1007/978-3-0348-0191-1⟩. ⟨hal-00390895v2⟩
420 Consultations
337 Téléchargements

Altmetric

Partager

More