Random modulation of solitons for the stochastic Korteweg–de Vries equation - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Henri Poincaré C, Analyse non linéaire Année : 2007

Random modulation of solitons for the stochastic Korteweg–de Vries equation

Résumé

We study the asymptotic behavior of the solution of a Korteweg–de Vries equation with an additive noise whose amplitude ε tends to zero. The noise is white in time and correlated in space and the initial state of the solution is a soliton solution of the unperturbed Korteweg–de Vries equation. We prove that up to times of the order of 1/ε2, the solution decomposes into the sum of a randomly modulated soliton, and a small remainder, and we derive the equations for the modulation parameters. We prove in addition that the first order part of the remainder converges, as ε tends to zero, to a Gaussian process, which satisfies an additively perturbed linear equation
Fichier principal
Vignette du fichier
TCLfinal.pdf (313.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00383280 , version 1 (22-03-2018)

Identifiants

Citer

Anne de Bouard, Arnaud Debussche. Random modulation of solitons for the stochastic Korteweg–de Vries equation. Annales de l'Institut Henri Poincaré C, Analyse non linéaire, 2007, 24 (2), pp.251-278. ⟨10.1016/j.anihpc.2006.03.009⟩. ⟨hal-00383280⟩
356 Consultations
63 Téléchargements

Altmetric

Partager

More