N

N

Random modulation of solitons for the stochastic
Korteweg—de Vries equation
Anne de Bouard, Arnaud Debussche

» To cite this version:

Anne de Bouard, Arnaud Debussche. Random modulation of solitons for the stochastic Korteweg—de
Vries equation. Annales de I'Institut Henri Poincaré C, Analyse non linéaire, 2007, 24 (2), pp.251-278.
10.1016/j.anihpc.2006.03.009 . hal-00383280

HAL Id: hal-00383280
https://hal.science/hal-00383280v1
Submitted on 22 Mar 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00383280v1
https://hal.archives-ouvertes.fr

RANDOM MODULATION OF SOLITONS FOR THE STOCHASTIC
KORTEWEG-DE VRIES EQUATION

ANNE DE BOUARD AND ARNAUD DEBUSSCHE

ABSTRACT. We study the asymptotic behavior of the solution of a Korteweg-de vries equation
with an additive noise whose amplitude ¢ tends to zero. The noise is white in time and
correlated in space and the initial state of the solution is a soliton solution of the unperturbed
Korteweg-de Vries equation. We prove that up to times of the order of 1/e?, the solution
decomposes into the sum of a randomly modulated soliton, and a small remainder, and we
derive the equations for the modulation parameters. We prove in addition that the first order
part of the remainder converges, as e tends to zero, to a Gaussian process, which satisfies an
additively perturbed linear equation.

1. INTRODUCTION

The influence of random perturbations on the propagation of solitons, either in the nonlinear
Schrédinger equation or in the Korteweg-de Vries equation has been extensively studied in the
physics literature; one of the method used is the so called collective coordinate approach, which
consists in assuming a priori that the main part of the solution is given by a modulated soliton,
and in finding then the modulation equations for the soliton parameters (see [3], [11]).

The inverse scattering method has also been widely used; it gives more precise results, but
requires particular perturbations ([1], [13], [25], [26]).

In [25], the special case of an additive perturbation which is a space independent white noise
is considered. In this case, using the Galilean invariance of the homogeneous Korteweg-de Vries
equation, the author was able to write explicitly the solution of the perturbed equation in terms
of the solution of the homogeneous equation, that is the soliton solution. It appears that this
solution is given by the sum of a randomly modulated soliton and a Brownian motion.

Our aim in the present article is to give a rigorous analysis of the validity of this kind of
decomposition of the solution for more general additive perturbations, which are still white
noise in time, but may also depend on the space variable. The analysis will be performed in
the limit where the amplitude of the noise tends to zero. The equation we consider may be
written in [t6 form as

(1.1) du + (03u + 0, (u?))dt = edW

where u is a random process defined on (¢,z) € RT xR, and the process W (¢, z) may be written
as W(t,z) = ¢22, ¢ being a linear bounded operator on L*(R) and B(t,z) a two parameters
Brownian motion on R™ x R. Considering a complete orthonormal system (e;);ey in L?(R),

1991 Mathematics Subject Classification. 35Q53, 60H15, 76B25, 76B35 .
Key words and phrases. Korteweg-de Vries equation, stochastic partial differential equations, white noise,
central limit theorem, solitary waves.



2 A. DE BOUARD AND A. DEBUSSCHE

we may alternatively write W as

(1.2) W(t,z) =Y Bi(t)pei(x),

1EN
(Bi)ien being an independent family of real valued Brownian motions. Hence, the correlation
function of the process W is

EW (t,2)W(s,y)) = c(z,y)(sAt), z,yeR, s,t>0,
where
o) = [ KoK . i

and K here stands for the kernel of ¢, that is for any u € L*(R),

(6u) () = /R K (2, y)u(y)dy.

We will be led to assume some spatial smoothness for the correlation function of the process
W. We indeed need enough smoothness on the solution of (1.1) we consider to be able to use
the evolution of the Hamiltonian and higher order conserved quantities of the homogeneous
KdV equation (see e.g. [24]). This may be translated in terms of the operator ¢: if we want W
to be a process (in the time variable) with values almost surely in a Hilbert space H, then we
need ¢ to be a Hilbert-Schmidt operator from L%(R) with values into H; this is also sufficient,
i.e. if this is the case, then the series in (1.2) converges in L%(Q2; H). We recall that ¢ is a
Hilbert-Schmidt operator form L%(R) into the Hilbert space H — denoted ¢ € Lo(L?(R); H) -
if and only if the norm

(1.3) 16llcyanm = tr(6°0) = 3 Ioeily

€N
is finite, and that this norm does not depend on the complete orthonormal system under
consideration. We will mainly deal with solutions living in the usual Sobolev space H!(R) of
square integrable functions of the space variable z, having their first order derivative in L?(R).
Because the Airy equation — the homogeneous linear equation associated with (1.1) — generates
a unitary operator, we will then be led to assume that W lies in H1(R),i.e. ¢ € L2(L*(R); HY).
In terms of the kernel K, this amounts to require that K € L*(R x R) and 9.K € L*(R x R).
Note that H1(R) is a natural space for the homogeneous KdV equation, and allows to use the
Hamiltonian, which we recall is defined for « € H'(R) by

(1.4) H(u) = %/R((?Iu)de _ %/IRUde.

We recall also that if € = 0, any time continuous solution of (1.1) with values in H'(R) satisfies
H(u(t)) = H(u(0)) for all ¢.

For ¢ > 0 the existence and uniqueness of path-wise solutions for equation (1.1) supple-
mented with an initial condition u(0) = uy € H'(R) has been studied in [5] (see also [7] and [8]
for existence and uniqueness of less regular solutions in the case of rough spatial correlations).
We recall hereafter the precise result (see [5], Theorem 3.1).
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Theorem 1.1. Let ug € H'(R) and assume that ¢ € Lo(L*(R); HY(R)); then there ezists a
solution u of (1.1), a.s. continuous in lime with values in H'(R), defined for all t > 0 and

with uw(0) = ug. Moreover, for any T > 0 such a solution is unique among those having paths
a.s. in some space X7 C C([0,T]; H'(R)).

Consider now the homogeneous Korteweg-de Vries equation
(1.5) Oy + 2u 4+ 9, (u?) = 0.

It is well known that this equation possesses solitary wave (soliton) solutions, propagating with
a constant velocity ¢ > 0, with the expression .z, (¢,2) = ¢c(z — ¢t + o), 2o € R and with

3c
16 c r==
(16) ve(®) 2 cosh? (/cZ)
satisfying
(1.7) ol — cpe+ @2 = 0.

A large literature has been devoted to equation (1.5), and especially to solutions of the
form (1.6). The most precise results have been obtained with the use of the inverse scattering
transform (see [2] or [19] for a review). It is known for example that any sufficiently localized
and smooth solution of (1.5) will resolve, as time goes to infinity, into a finite sum of soliton
solutions, (1.6), with different velocities, entirely determined by the initial state. If the method
gives precise results, however, it does not work for arbitrary perturbations of equation (1.5).
If e.g. the nonlinear term 8, (u?) is replaced by a more general term 9, f(u), then the inverse
scattering method does not apply in general, even though solutions of the form (1.6) still
exist for a wide range of functions f. Stability properties of such solutions (1.6) for those
generalizations of equation (1.5) have also been the object of several studies, starting with the
work of Benjamin [4] on orbital stability, and improving recently with the work of Pego and
Weinstein [21] or Martel and Merle [18] dealing with asymptotic stability. Note that another
conserved quantity for equation (1.5) is given by

(1.8) m(u) = %/RUQ(x)dx,

i.e. we have m(u(t)) = m(u(0)) for any solution v € C'(R; H') of (1.5), and that equation (1.7)
may be written as H'(¢.) + ¢m’(p.) = 0. The proof of orbital stability is based on the use of
the functional

(1.9) Qc(u) = H(u) + em(u), ue€ H'Y(R),

as a Lyapunov functional. It uses the fact that the set {¢.(. — s), s € R}, that is the orbit
of ¢, is a set of local minima of Q. restricted to the manifold {u € HY(R), m(u) = m(p.)}.
Indeed, the linearized operator

(1.10) Le=-0%4+c¢—2¢.
is not a positive operator on H!(R), but it is when restricted to the subspace of H! of functions

orthogonal in L?(R) to both ¢, and 9., (see [4] or [14]). Now, the operator arising in the
linearization of equation (1.5) is 0;L.. This operator has no unstable eigenvalue — see [20] —
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but it has a two dimensional generalized null-space spanned by d. and J,¢. Indeed, it is
easily checked that

0:L.0.0 = —0pp and 0:L.0.p=0.

The asymptotic stability is then obtained via the use of modulations of the solitary wave .
in both the phase parameter zg, and the velocity ¢, in order to get rid of these two secular
modes (see [18] and [21]). It is then proved e.g. in [18] that a solution of (1.5) (or some of
its generalizations), initially close in H(R) to a solitary wave of the form (1.6), will converge
weakly in H1(R) as time goes to infinity to another solitary wave of the form (1.6), but where
the velocity ¢ and the phase zg have been shifted.

Our aim here is to investigate the influence of random perturbations of the form given in
equation (1.1) on the propagation of solitary waves of the form (1.6). Consider indeed the
solution u®(¢, z) of equation (1.1), given by Theorem 1.1, and with u*(0,z) = @4, (z) where
cp > 0 is fixed. We may expect that, if € is small, the main part of the solution u(¢,z) is a
solitary wave, randomly modulated in its velocity and phase. We will prove in Section 3 that
this is true for time less than C'/e? where C is a constant. Note that this order of time C'/g?
for the persistence of the soliton is natural and was numerically observed in [10].

Our next purpose — achieved in Sections 4 to 6 — is to investigate more precisely the behavior
at order one in ¢ of the remaining term in the preceding decomposition, as € goes to zero. More
precisely, the preceding decomposition says that the solution u®(t, z) is written as

W (1) = Py (2 — a°(1)) + 20 (x — 2°(1))

where ¢*(¢) and z°(¢) are the modulation parameters — these are random processes, and more
precisely semi-martingales. Then, in the spirit of [12], chapter 7, we show that the process n®
converges as £ goes to zero, in probability, to a centered Gaussian process which satisfies an
additively driven linear equation, with a conservative deterministic part. Moreover, x° and c¢®
can be developped up to order one in €, and we get

dz® = codt 4 eydt + eBydt + €dB;y + o(e)
dc® =edB; + o(¢),

where By and By are time changed Brownian motions, and y is a Gaussian process. These
results are precisely stated and discussed in Section 2.

We end the introduction with a few notations. In all the paper, (.,.) will denote the inner
product in L%(R), or sometimes the duality product between the usual Sobolev space H™(R),
m € N, of functions having m derivatives in L?(R), and its dual space H ™ (R).

If A and B are Banach spaces, £(A; B) will stand for the space of linear bounded operators
from A into B, and £J* will be an abbreviation for £2(L?(R); H™(R)), the space of Hilbert-
Schmidt operators from L?(R) into H™(R), endowed with the norm defined as in (1.3), with
H = H™(R).

In all the paper, (€;);en is a fixed complete orthonormal system of L%(R).

For a sequence v = (v,,)nexn of real positive numbers, with lim,_, . v, = 400, we denote
by X, the space

(1.11) X, = {u € L*(R),Y ye(u,e)? = |ulk, < +oo}.
LeN
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Note that X, is compactly embedded in L*(R). The definition of X., a priori depends on the
basis (€;);en, but this will not cause any trouble, since this basis is from now on fixed.

Also, for zg € R, we denote T, the translation operator defined for ¢ € C'(R) by (T, ¢)(z) =
e(z + o).

Finally, we assume from now on that a stochastic basis (Q, F, P, (Fy)i>0, (W (t))e>0) is given,
i.e. (Q, F,P)is a probability space, (F;)¢>o is a filtration and (W (t))s>o is a cylindrical Wiener
process associated with this filtration. We then consider an operator ¢ with ¢ € L) and we

define
(1.12) W = ¢W.

More restrictive assumptions will be required concerning ¢ in Theorem 2.5, and they are stated
there.

The paper is organized as follows. Section 2 is devoted to the statement and discussion of the
results. In Section 3, we prove Theorem 2.1, i.e we explain how we can define the modulation
parameters. We also estimate the exit time, i.e the time up to which the modulation procedure
is available. In Section 4, we give the equations for the modulation parameters and start to
estimate these parameters. Section 5 is devoted to estimates on the remainder term. These
estimates will allow us to pass to the limit and conclude the proof of Theorem 2.5 in Section
6. Finally, in Section 7, we collect the proofs of a few technical estimates which will be used
in Section 6.

2. STATEMENT OF THE RESULTS

Let ¢g > 0 be fixed, and consider for € > 0 the solution u°(¢,z) of equation (1.1), with
u®(0,2) = @q(2), given by Theorem 1.1. The next Theorem says that «® may be decomposed
as the sum of a modulated solitary wave, and a remaining part with small H' norm, for ¢ less
than some stopping time 7° which goes to infinity in probability as € goes to zero. We shall
then show that this remaining part is of order one with respect to €.

More precisely, we will write

(2.1) ut(t, @) = ey (2 — 2°(1) +en° (L, @ — 2°(1))

for some semi-martingale processes ¢®(t), z°(t) with values in R™* and R respectively, and 7°
with values in H'(R). In order to keep |c*(t) — co|, and |en®|g1 small, we will require the
orthogonality conditions

(2.2) /Rns(t,ac)gaq)(ac)dx = (1", ¢q) =0, as., t<7°

and

(2.3) / N (L, ) 0ppey (2)dz = (07, 0ppe,) =0, aws., t<7°.
R

The precise statement is the following result, proved in Section 3.

Theorem 2.1. Assume ¢ € L3 and let ¢co > 0 be fized. For ¢ > 0, lel u®(t,x), as defined
above, be the solution of (1.1) with u(0,z) = @, (x). Then there exists ag > 0 such that,
for each o, 0 < o < v, there is a stopping time 7, > 0 a.s. and there are semi-martingale
processes ¢(t) and x°(t), defined a.s. for t < 75, with values respectively in R and R, so
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that if we set en®(t) = u(t,. + a°(t)) — @ee(¢), then (2.2) and (2.3) hold. Moreover, a.s. for
t<71g,

(2.4) len®(O)|mer) < @
and
(2.5) |c?(t) — col < o

In addition, there is a constant C' > 0, such that for any T > 0 and any o < «g, there is a
go > 0, with, for each € < gq,

. C
(2.6) P(ri <T) < =T ¢llgy

Remark 2.2. The processes c*(t) and z°(t), and therefore 1°(t), depend a priori on o. How-
ever, we did not reflect this dependence in the notations, since we will see that

cg, (1) =c,(t), as for <715 AT,

and the same is true for x°(t), with obvious notations.

Remark 2.3. Estimate (2.6) implies that for any o < g, 75, goes to infinity in probability as
€ goes to zero; this would have also been the case however if we had simply writlen
ut(t, ) = ey (T — cot) +en(t,z — cot)

and defined T¢ as

e =inf {t € R, |u’(t, 2 + cot) — oo |lgn > ).
Indeed, it is not difficull to prove, using the same arguments as in [6], Section 3.3, that for
any T > 0, u®(t,.+ cot) converges almost surely to ¢., in C([0,T]; HY(R)) as ¢ goes to zero.
However, in this case, since the secular modes are not eliminated, the remaining term ene
remains small on a much shorter time interval. Indeed, keeping in mind the case of a finite
dimensional linear system with non positive spectrum and such that 0 is a degenerate double
eigenvalue, we expect that this time interval is of order e=2/3. On the other hand, (2.6) shows
that with the use of the modulation, en® is small on a time interval of the order of ¢~ 2.
Moreover, it is not clear that we could prove a better estimate than

P(r5 < T) < Cog®Te1 ¢y,
yielding a time of order In(1/e).

Remark 2.4. Note that there is no uniqueness of the “main part of the solution”, and ac-
cordingly of the modulation parameters. We have lo choose some specific condition on the
remaining part, in addition with the fact that it has to stay small as long as possible. This
latter condition is in general ensured — in the case € = 0 and perturbations of the initial data
— by choosing the modulation parameters in such a way that the secular modes associated with
the linearized operator around the initial solitary wave are eliminated (see [21]). The linearized
operator around the modulated solitary wave may also be used (see [18]). There is some choice.
However, in the case of an additive perturbation as given in (1.1), we cannot expect to be
able to predict the asymptotic behavior of the solution as time goes to infinity (note that some
energy is continuously injected in the system in that case). Hence, in order to minimize the
compulations, we choose the simplest orthogonality conditions which ensure that the remaining
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part stays small as long as possible, i.e. we require that this remaining part is orthogonal in
L*(R) to both ., and 8,¢e, -

We now turn to analyze the behavior of n°, and of the modulation parameters z° and ¢® as
€ goes to zero.

Theorem 2.5. Let ¢ € L2, and assume moreover thal there is a sequence 7Y = (v,)nen of real
positive numbers with lim,,_ o 7, = +00, such that ¢ is Hilbert-Schmidt from L*(R) into X.,.
Fiz cg > 0 and let n°, z%, ¢, for € > 0 be given by Theorem 2.1, with o < ag fized. Then for
any T > 0, the process (1°(t))sc[o,1] converges in probabilily, as ¢ goes to zero, to a Gaussian
process n salisfying the additive linear equalion

dn = 0pLeyndt+|0:¢c, |522 (7, Ley0%00,) Oripe, dit
(27) - |az‘99c0 |522 ((7;01‘65) de 81;99% )81'9900
_(99007 809‘900)_1 ((,Tcotqb)dwv 9‘900)809900 + (ﬁot¢)dW

and with n(0) = 0. Here L., is the unbounded operator on L*(R), with domain D(L.,) = H*(R)
defined by (1.10). The convergence holds in probability in C([0,T]; H} ) for any s < 1, and in
L*(Q; L*°(0,T; HY)) weak star.

The above process n salisfies for any T > 0 the estimale

(28) B supln(t) i) < C+T)lloll,

for some constant C' > 0, depending only on cq.
Moreover, the modulation parameters may be written, fort < 7°, as

(2.9) dz® = c°dl + ey®dt + (2%, dW)
and
(2.10) de® = ea®dt 4 £(b°, dW)

for some adapted processes y°, a®, with values in R, and predictable processes z° and b° with

values in L?(R) satisfying: as £ goes to zero, a® converges to 0 in probability in C(RT), while
y® converges in probability to |0¢c, |73 (n(t), Ley02pc,) in C(RT), n being as above. On the
other hand, ¢*z* converges in probability in C(R¥; L*(R)) to —|0u¢c,| 13 (Teyt®)* Outpe, and ¢*b°
converges in probability in C(RT; L2(R)) to (9c@eys Peg) ™ (Tept®)* Peg -

Remark 2.6. The estimate (2.8) seems to be optimal, as long as we deal with the energy space
HY(R). However it is rather unsatisfactory, since it does not reflect the fact that we have got
rid in some sense of the secular modes, and a uniform estimate would be expected. It appears
that such an estimate probably holds under additionnal “localisation” assumptions on ¢, i.e.
assuming e.g. that the process (W (t)):i>o lives in a space of functions with exponential decay
on the right. That will be the object of further studies.

Remark 2.7. Theorem 2.5 implies that at first order in g, i.e. neglecting all the terms which
are o(g) as € goes to zero, the equations for the modulation parameters may formally be written
as

dx® = Codt + Eydt + EBldt + EdBQ
dc® = SdBl.
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Here, y is the real valued cenlered Gaussian process given by

y = |81'§‘OCO|_2(777 LCoag‘;PCo)?

n being the solution of (2.7) with n(0) = 0, and (By, B2) is a R?-valued centered Gaussian
martingale given by

t
Bi(t) = (Dopey 000) ! / (Tecospen, AW (5)),

and )

Ba(t) = —10upe, |72 / (Tecoulu ey AW (5)).
Note that .

B(BE (1) = (O 20) ™ | 16Tl
and

t
E(B2 (1)) = |0speo |72 / (6T oD oo [2als,

and that in the case where ¢ is non degenerate — in the sense that the null-space of ¢* is reduced
to {0} — By and By are time changed Brownian motions. Due to the spatial correlation of the
noise, i.e. to the presence of the operator ¢, By and By are not independent in general. Indeed,
their correlation function is given by

tAs
E(B1 (t)Ba(s)) = —(0cpeo, 9900)_1 [ |Z22 /0 (0T co0Peqs @ T-co00npc, ) do.

They would have been independent in the case of a space-time white noise — i.e. the case ¢ = id
— which however does nol satisfy the assumptions of Theorems 2.1 and 2.5.

The next section is devoted to the proof of Theorem 2.1. We first prove with the use of an
implicit function theorem the existence of a stopping time 77, for o < o, such that the de-
composition (2.1) holds for ¢ < 75, with z° and ¢® semi-martingales and 7° satisfying (2.2) and
(2.3). We then estimate |en®(¢tATS)| g1 in order to prove (2.6). For that purpose, we make use of
the Lyapunov functional Q., (see (1.9)), and in particular of the fact, mentioned in Section 1,
that Q7 (¢c,) is a positive operator when restricted to the orthogonal of span{p.,, 0z, }-

In Section 4, we first derive the equation for 1°, by using the It6 and It6-Wentzell formulae.
We then deduce the modulation equations, i.e. the equations for the parameters y°, z°, a®,
b® arising in the expressions (2.9) and (2.10) of ¢® and z° as semi-martingale processes. This
allows us, at the end of Section 4, to estimate these parameters in terms of |1|2.

Coming back, in Section 5, to the equation for 7°, and making use of the latter bounds on
the modulation parameters, several estimates on 7° are derived. The aim is of course to prove
that the family composed with 7* and the modulation parameters, for all £ > 0, is tight in some
adequate function space. Actually, the technical part of the proof of these estimates, which
relies mainly on the application of the 1td formula to different functionals of 7, is postponed
to the appendix, Section 7.

Finally, a compactness method is applied in Section 6 to get the existence of a limit and the

limit equation.
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3. MODULATION AND ESTIMATE ON THE EXIT TIME

The following lemma will be useful for the proof of Theorem 2.1. It simply follows from an
application of the It6 formula, and the same smoothing procedure as in [5].

Lemma 3.1. Let u® be the solution of (1.1) given by Theorem 1.1, with u®(0,z) = ., (z) and
assume that ¢ € L1; then for any stopping time T we have

(3.1) m(u®(7)) = m(pe,) _}_S/OT(UE(S), dW(s)) + %T”Gﬁ”ig, a.s.

and
-

H () = Hipo) 4= [ (0:07(),0.aW(5) == [ ()% aW ()

0

2 T
+%T”¢”ﬁé—€22/0 (u® (s)dex, ex)ds  a.s.

keEN

(3.2)

We now turn to the proof of Theorem 2.1.

Proof of Theorem 2.1. Under the assumptions of Theorem 2.1, we denote, for o with 0 <
a < co/4, by By, (2a) the ball in H'(R) of center ¢, and radius 2. We then consider the

mapping
Z: (co—2a,¢0+2a) X (—20,2a) X By, (2a) — RxR
(C7 Zo, u) — (11712)
defined by
Ti(e o0, 0) = [ (o +00) = (o) (0)do
R
and

To(era0u) = [ (ule +20) = (o)) drey (),

Clearly, Z is a C? mapping of its arguments — note that ¢.(z) is an infinitely smooth function
of both ¢ and z. Moreover Z(cg, 0, ¢,) = 0, and it follows from (1.6) that

¥ 2 3
acII(007 0, 9900) = _(Wcovac@co) = _EK‘OCOEQ <0,
and
817012(007 0, 9900) = _|8$9900|%2 <0.

Hence, we may apply, for @ < ag where ag is sufficiently small, the implicit function theorem,
to get the existence of a C* mapping (c(u), z(u)) defined for u € By, (2a), such that

Ty (e(u), 2(u), u) = Ty (e(u), 2(u), ) = 0.
Moreover, reducing again « if necessary, we may apply the implicit function theorem uniformly
around the points (¢, 0, ug) satisfying

Z(c,0,u0) =0, |c—col <o, and |ug— @e | < .
Applying this with v = u®(¢), we get the existence of ¢°(¢) and z°(¢) such that (2.2) and
(2.3) hold, with en(t) = u®(t,. + 2°(t)) — @ee(y). Note that the H'-valued process u is a
semi-martingale with values in H~%(R). Since the functional Z defined above is clearly a C*
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functional of u on H™%(R), it follows that locally in time, the processes ¢ and ¢° are given
by a deterministic C? function of u®* € H~2. The It6 formula then implies that ¢ and z° are
semi-martingale processes. Moreover, since we clearly have Z(c*(t),0,u®(¢,.+ 2°(¢))) = 0, the
existence of z°(¢) and ¢°(¢) holds as long as

[¢*(t) —col < @ and |u®(t,.+ 2°(1)) — ool g < .
Let us denote by 72 the stopping time
e =inf{t >0, |c°(t) —col > a or [u(t,.4+2°(t)) — @eolur > a},
so that ¢*(t) and 2°(t) are defined for ¢ < 72; let us also denote by 75, for 5> 0, the stopping
time
to=inf {t >0, [c°(t) —col| > or [u(t,.+2°(t) = ee ()l > B}
Since, as long as |¢*(t) — co| < a < ag, the inequality [pee () — peo|gr < Ceav holds, with a
constant C' depending only on ¢g and «p, it follows obviously that
T < 77—(60-}-1)(1 < T(EC-H)?a'

Hence, decreasing again g, the processes 2°(¢) and c°(t) are defined for all ¢ < 77, , and satisfy
forall t <75, a < ap, (2.4) and (2.5) in addition with (2.2) and (2.3).

Thus it remains only to prove the estimate (2.6). This is actually the most technical part
of the proof. We will make use of the functional @Q., defined by (1.9). Note that Q., is a C?
functional of w € H'(R) and that Q! (¢¢,) = 0 by (1.7). Moreover, it is well known (see e.g.
[14]) that there is a constant v > 0, depending only on ¢, such that for any v € H!(R) with
(v, 9ep) = (v, Ozpc,) = 0, we have

(3'3) (ng (9900)'07 IU) Z V|v|121117
where Q" (¢s,) = Loy € L(HY(R); H7Y(R)). Now, we may write, almost surely for ¢ < 7¢:

€o

Qoo (u (L, -+ 2°(1) = Qoo (Pes 1))
= (QL (pes(r)),en°(1)) + (QF (#ee())en® (), em® (1)) + o(len® ()] F)-

(3.4)

"

Note that o([en®(t)|3;,) is uniform in w, & and ¢, since Q' (¢.) and QY (¢.) depend continuously
on ¢, and since [c(t) — co| < a and |u®(L,. + (1)) — eyl = [en°(1) g1 < afor ¢ < 78,
We then assume that ap has been chosen small enough so that the last term in (3.4) is
almost surely less than §|en®(t)]%, for all ¢ < 75,
Note that there is a constant C', depending only on ¢g and ag such that the inequality

Q¢ (wee(1) — Qo (Peo )l a1y < 2Pee(e) = oo lre < Cle*(t) — col
holds, for all ¢ < 7, and thus

(QF (pe)en®,en®) > v|en®|3 — Cle® — collen®| G-
On the other hand, since Q% (<) = 0 by (1.7),

c€

e e e v e e
Q) (en°) = [((co = ) pee, em7)| < S len®[f + Cleo = [
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it then follows from (3.4) that for all @ < ayg, and for all ¢ < 75, we have a.s.
€ € v € £
(3.5) Qoo (U (1, -+ 2°(1)) = Qoo (0es) 2 7 len ()71 = Cle(t) = ol

for a constant C' depending only on «g and cp.
We now make use of Lemma 3.1 to deduce from (3.5) that a.s. for all ¢, denoting for
simplicity 7 = 75 A t:

e (i < 3 [Qa (u (7, 4 25(7))) = Qo (#es(r))] + Cle*(7) = col?
< 4Qu (0 (1) — Qeolpee)] + Cle(r) = col?
(3.6) < %[QCO (#eo) = Qoo (Pes(r)) + 5/0 (0pu (), 0xdWV (s))

_5/07((u6(5))27dW(5))-}-Cog/OT(us(s),dW(s))—}—%THéHQE%

T

C
4ol [ lulaeds + Frlolly] +Cle(r) - ol
0

We now estimate [¢*(7) — ¢g|®. On the one hand, the orthogonality condition (7%, ¢.) = 0
implies

[ (P)l3e = Jus(7, 4 2 (7))L = [en*(7) + pee (|12
= |5776(T)|%2 + |9905(T)|%2 + 2(8775(7—)7 Pee(r) — 9900)

and on the other hand, from Lemma 3.1

|u(7)|Z2 = leolz2 + 28/0 (u*(s), dW (s)) + 7|l 7.

It thus follows from the equality of the two terms that for some constants C' and p, depending
only on ¢g and ay,

ples(r) = ol < leeolts = l¢es()32] )
< lent(7) %2+2|5776(T)|H1|99c5(7)_99co|L2+25|/ (us(s), dW (s))]

Te2r 0|12 i
< ler ()l Caler(r) — ol 4 221 [ (), W)+ e

Hence, choosing again ag sufficiently small, we get
60 e - al <C e+ 1 [ . av )Pl
0
Inserting (3.7) in the right hand side of (3.6), and using in addition that, because Q! (¢c,) = 0,

|Q00 (9900) - QCO (9905(7')” < C|99Co - 9905(7)|12111 < ClCo - CE(T)P
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for some constant C'(cg, ag), we obtain
O < Cllenr ks + 42 [ o), W)+l

. b [0 (@), (9) — = [ (S (s))2a ()
3.8 0 or 2 0
reor [ (0 (9), W (s)) + 7l

0

T . 82
4ol [l laeds + Tl
2 0 2

Again, the constant C' in the right hand side of (3.8) only depends on ¢ and «p.
Let us now fix T" > 0 and set

QU ={weQ, 75w <T, and |en(r5)|y = a}

and
Q" ={weQ, 7i(w) <T, and |°(r5) —co| = a}

a

so that
P(r5(w) < T) < P(Q)7%) + P (2,57

Let a; > 0 small enough so that Ca? < 1/2, where C = C(ao Co) is the constant appearing in
the right hand side of (3.8). Multiplying both sides of (3.8) by QT,E,Q, assuming o < ay and
taking the expectation with 7 =75 AT, we easily get

a? Te,a

TP(Q1 )T

< ClaE] [ (0 (o), W) g + T 0l 5 P(RF )
T 0 T
P e P e 2
+5E< /0 (90 (s), aIdW(s))nﬂlT,E,a) - 5E< /0 (w5 (s)) ,dW(s))nﬂlT,E,a)

T 2
€ € Te,o
+COSE(/O (uF (s), AWV (5)) g7 ) + STl6l24 P

T 2
€ € 2 T.e,c
+gz”¢”3:%1@</0 [0 () p2dslgrens ) + o3 T|0l 2P (@)

Now, using the Cauchy-Schwarz inequality in the right hand side above, together with the
fact that |u®(s) %Il < C as. for s € [0,7Z A T], where C only depends on ¢y and «ap, and the
Biirkholder-Davis-Gundy inequality, we get

PO

< o [452(1@(/OT(UE(S),dW(s)))“)I/Q+5<E( /OT(aﬁu( ), 0,dW (s))) )
e (k[ am )"+ eos(B( [ et awe)?) e e
+(Cos T2l + Cas?T 6], ) B(R] )

< ClevTlIollcy (1 +eVTII9ll oy (2 =) 2 + Co> TN l1%; (1 + 2 TlI] % P (27
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and it follows, if we choose ¢ < g¢ with

2

(8%
(3.9) CoegTIlélIZy (1 + 8 TllellEy) < 7
that
e, C
(3.10) P(Q"7) < 7617,

It remains to estimate P(QQT’E’Q). Coming back to (3.7) and using the same arguments as above,
we easily get

Te,a Te,a Te,o Te,a i
o’P(2,77%) < C|a'P(Qy"%) + T2 g3 P (27 + 2T 10l 2 P (R, %) /2
therefore, if @ < o and ¢ is small enough, we have
3.11 p@l=e) < Setr2|g)t
(3.1) (@) < ST ol

(2.6) follows from (3.10) and (3.11), for @ < oy and ¢ small enough with respect to « and
T. O

4. MODULATION EQUATIONS

We now fix « in such a way that the conclusion of Theorem 2.1 holds, and we turn to
derive the equations for the modulation parameters z® and ¢°, and for n°. These modulation
equations will allow us to obtain estimates on these parameters in the next section. As « is
from now on fixed, we write 7° for 72 in all what follows.

We know from Theorem 2.1 that z° and ¢® are semi-martingale processes, adapted to the
filtration generated by the Wiener process (W (t))¢>0. We may thus write a priori the equations
for 2° and ¢© in the form (2.9) and (2.10), where y° and a° are real valued adapted processes
with paths in L!(0,7°) a.s., and 2° and b° are L?(R)-valued predictable processes, with paths
in L%(0,7%; L*(R)) a.s.

Lemma 4.1. With the above notations, n° satisfies the equation

dn® = OpLen®dl + (Y 0upes — a®0cpee)dt + (¢ — o + ey®)Dpn°dt — 0. ((1°)?)dt
_2613((9905 - @co)ﬁa)dt + (6959‘%5)(267 dW) - (669965)(1367 dW)

20,17 (25, dW) + (dW)(t,. + 2°(1)) + € Z Toe (Dxer) (25, deg)dt
LeN

(020|057 — 2l V)t + $200 6 .

(4.1)

Proof. We first perform formal computations, after what we explain how they can be justified.
We apply the [t6-Wentzell formula to u® (¢, z + 2°(t)), using the fact that u® satisfies equation
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(1.1) and 2° satisfies equation (2.9). We then formally get
d(us(t,z + z=(t)))
= —02ut(t,x+2°(t))dt — 0, ((u(t,z + 2°(1)))?)dt + e(dW) (¢, = + 2°(1))
(4.2) +e(0zu®) (L @ + 2% (1) y" (1) dt + ¢ (1) (9zu™) (¢, 2 + 2°(1))dt
+e(Du®) (8,2 + 22 (1)) (25(2), AW (1)) + 5 (02u%) (¢, @ + 2%())[¢*= (1) |3 dt
+e Y (9nder) (2 + 2°(1)) (°(2), per)dt,

LeN
where
(AW)(t,z+2°(t) = Y (der) (x + 2" (1) dBe(t) = ) _(Toenydee) (x)dBie(1).
LeN LeN
Using now the (standard) Ité formula and equation (2.10), we have

A(@eer) = 0o iydes(8) + 5 020 ()| 67b° |20t
= Eac@ce(t)(le (t)dt + 0. () (bs (t), dW(t)) + %83@05 (t)|¢*b6|%2 dt.

Replacing then in (4.2) u*(t,z +2°(t)) by @ee(s)(z) +en°(t, ), using (4.3), (1.7) and (1.10), we
deduce equation (4.1) for °, where we have used
OpLesu = OpLeyu~+ (¢ — co)(0pu) — 205 ((es — ©op)8)-

The above computations may be justified as follows: consider a sequence ¢™ of linear op-
erators in L3, converging to ¢ in £1. Tt is not difficult to see that there is a unique global
solution u¢ of (1.1), with uZ (0) = ¢, with paths a.s. in C(R*; H*(R)), and that u converges
to u® a.s. in C(RT; H) as n goes to infinity. Moreover, taking « smaller if necessary, all the

arguments in the proof of Theorem 2.1 apply uniformly in n, for n large enough. It means
that we may write, for a small enough, and for any n > ng(«),

un (b x4+ 27 (1) = @es (1) (2) +emp (¢ @)
with (95, @) = (75, 0zpe,) = 0, and this almost surely for ¢ < 7° not depending on n. All the
above arguments are justified for a fixed n, since all the terms arising in the equation for uf,
are continuous in both the ¢ and x variables; we then argue as above on « instead of u®, and
take the limit as n goes to infinity in the final equations. O

(4.3)

We now derive the equations for the modulation parameters y°, a®, z° and b°. We set for
convenience in all what follows

(4.4) 7= ( EZEQ:ZZ)) ). fenN, and ve()=( 28 ).
Lemma 4.2. The modulation parameters satisfy the system of equations
(4.5) A*(t)Z; (t) = F;(t), YleN

and

(4.6) AS()Y*e(t) =G*(t), Vt<T°,
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where Z; and Y*® are defined in (4.4), A® is defined by

61: c® + 581‘ 6781" co - 80 cevaz co
(4.7 A (1) = (0= 1%, 0zpey) = (Ocpes, Ouipey) |
- (81‘9905 ) 9900) (809905 y 9900)

F* is given by

- (7;5 (¢€€)7 8&09‘900)
(7;5 (qbef)v 9‘900)

(4.8) Fi(t) =

() ) , with

Gi(t) = (7% Le07c,) + (cf —00)(775 07peo) + €(02((n°)?), Outpcy)

+2(8$((9905 - @Co) 179900 Z zéeé 1:9900)('267 ¢€g)
(4.9) (eN

_%(829905 ) az@00)|¢*26|%2 (629905 r¢00)|¢*b6|%2
362 (0%, 02| 972°13 2

and
Gg(t) = _5(395((776)2) @co) - 2(0 ((9905 - 9960)776)7 @co)
(4.10) +5Z (Ouder), Pc,) (27, PEr) + 2( et ¢CO)|¢*ZE|L2
LeN

—5(020c, 0o )|9°b° 172 + 587 (0°, 02epc, ) 672712

Proof. We take the L? inner product of equation (4.1) with ¢.,, and make use of the orthog-
onality conditions (2.2) and (2.3) together with the fact that L, 0,¢. = 0, as can be seen
easily from (1.7). This leads to

0 = d(n°, ¢q) = (dn°, c,)
= (YOupes — a°0cipes, Py )dt — £(0:((1°)?), Peo ) At — 2(0u((Pes — Peo)°)s Peg )l

(4.11) F(0zpes s Pe0) (25, dW) = (Dcpes s peo) (b5, AW) + (W) (2, . + 27), 0cy)
e 3 (Ter (Buter), 0eo) (7, dee)dt 4 5 (02ipee, e |67 ot
£eN

—%(3029905 ) 9900) |¢*b6|%2 dt + %52(627767 9%0) |¢*ZE|%2dt-
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In the same way, taking the inner product of (4.1) with J,¢.,, and making use of (2.3), it
comes out that

0 = d(n, 0upe,) = (A7, Onipey)
= (1% Leg@2pce )l 4 (Y 0ppes — a°0eipee, Dripey ) di
+(c® = co+ey°) (0:n°, Duipey )t — £(02((1°)?), Dutpcy )dt
=2(0:((pes = 9eg)1%)s Oxtpeo )dt + (Ozpes, Duipey ) (2%, dW)
—(0ctpes, Opey ) (0%, dW) + (021, Daipey ) (2%, dWV)

H(AW)(t, .+ 2%), 020c) + £ > (Tas (Dxtber), Duipey ) (25, der)di
£eN

‘|’%(8§§0Ca, 8zS‘OCO) |¢*ZE|%2 dt — %(6029905 9 8$§000)|G§*b6 %2 dit
32 (020, Duipey )07 2° (2, d1.

(4.12)

We may now write that both the drift and martingale part of the right hand side in equations
(4.11) and (4.12) are identically equal to zero. The identification of the martingale parts in
both equations gives, for each £ € N the system of equations

(Ozpce, Oxtpey ) (25, Per) — (Ocpes, Optpey ) (0%, Per) + (€0:21°, Orpey) (27, Per)
—(Tz=(9€r), Oxpey)
(Ocpes, Pey) (b, Per) — (Owpes s ey ) (25, der) = (Ta (Per), ¢cy),

which is exactly (4.5). The identification of the drift parts gives (4.6). O

We deduce from the modulation equations given in Lemma 4.2 the following estimates for
the modulation parameters.

Corollary 4.3. Under the assumptions of Theorem 2.1, there is a ay > 0 such thal for a < aq,
there is a constant C'(cy, o) with

(4.13) 67250 1 + 65 (Ol2 < Clegya)ll@ll g, for all ¢ <7
Moreover, there are constants Cy and Cq, depending only on ¢g, o and quH% such that
(4.14) la® ()| + |y° ()] < Ci|n°(t)|2 +eCq,  a.s. for ¢ <715

Proof. Note that, almost surely for ¢ < 7°, A*(t) = Ao + O(|¢® — co| + |en®|yr) with

Drpeo |2 0
AOI | 990|L2 7

0 (99607 8&}900)
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and with O(|¢® — cg|+|en®| 1) uniform in €, ¢ and w, as long as ¢t < 7°. Hence, choosing o < oy
smaller if necessary (depending only on ¢p), it follows that setting

(4.15) A%(t) = Ao+ ljg 1<) (1) (A%(t) — Ao),
the matrix As(t) is invertible, for all ¢, and for a.e. w € €,
1(A*(8)) ]| < C(eo, ).

We deduce that for & < gg, ¢ < 7%, (4.5) may be solved by Z5(t) = (A*(t)) ' F (t), leading to
the estimate

(4.16) |(25(2), dee) | + | (6°(2), der)| < Cleo, )| FE (1) < Cleo, a)|der] 2| peo | mn

for all £ € N and all ¢ < 7°; (4.13) follows from the Parseval theorem.
To prove the estimate on the drift part, we note that for @ < a;, the estimate (4.13) easily
leads to

IGI()] +|G5()] < Cynt(t)|2 +C2y  a.s. for t<7°

where C'y and C; are constants depending only on cg, a and [|¢[|;1. In view of (4.6), and the
above arguments on A°, (4.14) follows, with possibly different constants. O

Under the more restrictive assumptions of Theorem 2.5, we get the following estimates on
2 and b%, which will be useful for the tightness of the family.

Corollary 4.4. Under the assumplions of Theorem 2.5, and if o < «q, there is a conslant

C'(co, ) with

(4.17) sup (1672 (0)|x, + |65 (D)]x, ) < Cleo, o) l@eolin 9] caizeex

t<T*

Proof. If v = (Vn)nen is a sequence of real positive numbers such that ¢ is Hilbert-Schmidt

from L?(R) into X, where X, is defined as in (1.11), then we may write using the Parseval

identity and (4.16)

672 %, + 16701k, = 3 veer, ) + velder, 1) < C(eo, @)loee 2 3 el beel3a.
£eN LeN

Hence, (4.17) follows. O

5. ESTIMATES ON THE REMAINDER TERM, AND TIGHTNESS

In this section, we list some estimates on the remainder term 7° defined in the preceding
sections. These estimates will allow us to apply a compactness method, and pass to the limit
as € goes to zero. This will be done in Section 6.
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Again, here, @ < ap is fixed. Moreover, we assume from now on that ¢ € £3. We may write
down equation (4.1) for ° in the equivalent form

dn = 0pLenfdt + (Y0, — a0 )dl + £(0,m°)y°dt — €0, ((n°)?)dt
+0ppce (25, dW) — Depee (b5, dW) + £0,m° (25, dW) 4 (dW) (¢, . + 2°)

I3
+e 27; (Oz0e¢) (2%, Peg)dt + 5(33%5 ¢"2%|72 — 02 e |7b% |7, ) dt
LeN
520207 | ™2 |3 . dt.

Some of the estimates listed in the present section are obtained with the use of equation (5.1),
applying the It6 formula to different functionals of n®. The details of the proofs are rather
technical, and are postponed to the Appendix, Section 7.

Applying the It6 formula to [7°|7,, we first get the following estimate (see Section 7 for the
proof).

Lemma 5.1. For any positive T', there is a constant C(T) depending only on T, «, ¢o and
|9l z1 such that

(5.2) E (te[sup Ins(t)liz) <C().

0,75AT]
In the same way, applying the Ité formula to [0;7°|7., we obtain (see Section 7)

Lemma 5.2. For any positive T, there is a constant C(T) depending only on T, «, ¢o and
9l zz such that

0,75AT]

(5.3) E (te[sup |n5(t)|§p> < O(T).

Remark 5.3. Some of the terms arising in the course of the proof of Lemma 5.2 need the use
of auiliary estimates, like estimates on B(sup < - 7 [2021°(t)|]2). These estimates are stated
and proved in Section 7, and are responsible for the restriction on the regularity of ¢, i.e. the
fact that we require ¢ € L2 and not only ¢ € L1.

In order to proceed with the compactness method, we need estimates on the moduli of
continuity. Note that the family (7, y%,a%, 2%,b0%) = (1°,Y*, Z¢) is a priori only defined for
t < 7°. We define it for ¢ € RT by simply setting n°(t) = 5°(7°) for t > 7¢ and the same for
Ye and Z°.

The next estimate is a simple consequence of Lemma 5.2 and equation (5.1).

Lemma 5.4. For any positive T and any real number 3 with 0 < § < 1/2, there is a constant
C(T, B) depending only on T, 3, a, co and quHE% such that

(5.4) E <|”76(t)|20ﬁ([o,T];H—2(R))) < C(T, B).

The tightness of the laws of Z¢ in [C([0,T]; L*(R))]? and of Y* in [C([0,T];R)]?* will be
obtained thanks to (4.17) and the following estimates.
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Lemma 5.5. For any positive T and any real number 3 with 0 < § < 1/2, there is a constant
C(T, B) depending only on T, 3, a, co and quﬂﬁg such that

(5.5) E (|¢*26|Cﬁ([O,T];L2) + |¢*b5|05([0,T];L2)) <C(T,p)
and
(5.6) E <|a€|cﬁ([0,T]) + |3/6|05([0,T])> <C(T,B).

Proof of Lemma 5.5. Let T" > 0 and 3, with 0 < 3 < 1/2 be fixed. The integrated form of
equation (2.10), together with estimates (4.13), (4.14) and the definition of 7° easily produce

(5.7) E <|C€|Cﬁ([0,T/\75])) <C(T,p).

In view of equation (2.9), and using again (4.13) and (4.14), it comes
E <|w6|05([0,T/\75])) <C(T,B).

We then turn to equation (4.5) for Z; = ( EZE’ zzég ) and we estimate
) PEL

B sup [F() - F7(s)?)

$5,1<TEAT

< CE( sup |7;e(t)¢€z—7;5(5)¢€é|%2>(|%0|%2+|3z90co|%2)-

s,t<TeAT

JFrom equation (2.9) for 2° and the Ité formula, if s < ¢,
deel.+2°(8)) — deel. +2%(5))
t 1 t
= [ (e 2 @) (o) + 5 [ @Eoen(+ (@)1 (o) rude

so that using equation (2.9), and estimates (4.13) and (4.14) again, one obtains

E ( sup |ge(. + 2%(1)) — dee(- + xs(S))l%z)

(5.8) st<TEAT
< Cla, B o)t — 5P |gecl?s

from which

5,1<TEAT

(5.9) E( sup |F7(1) - FE(S)IQ) < C(T, 0, B, o)t = 8% bl o

follows. In the same way,

E( sup |(A%)7'(t) — (AE)_1(5)|2) < E( sup |(A%)71 () (A(t) — AE(S))(AE)_I(S)P)
5,4 <T 5,t<T
< CE(s,tzi?ATME(t) - As(5)|2>
< C(T,a,ﬁ,co)|t—5|25
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since (A%)~! is uniformly bounded in ¢, w, and ¢ for ¢ > 0. This together with (4.5) and (5.9)
imply (5.5).
The proof of (5.6) requires estimates on G°(t) in C?([0,T]). ;From (4.9),

G5(1) - Gis)] < Cla, o, chHzg){lns(t) =07 (8)lm—= + | (1) = “(s)|(1 + sup [7°(2)]2)

t<*
D | Toe()(9edee) = Toe ) (Dutrer) 21 (2°(1), er)]

£eN
6725 (1) — 6725 (8)] 12 + [675°(1) — 67 (5)] 2
el ((7)2(0) = (1°)%(5), Dupey)| |

and the last term is bounded above by

c (sup |mf<t>|H2) 102 0un 2 17 (0) — 17 (5) 2

t<T*

hence estimates (5.2), (5.4), (5.7), (5.8), (5.5) and Lemma 7.2 together with the Cauchy-
Schwarz inequality lead to

E( sup IGi(t)—G"i(SH) < C(T, 0, B, o, 9]l oIt — sl

5,1<TEAT

Moreover, the same estimate holds with G replacing G, and (5.6) follows, with the help of
the above argument on (A®)71(¢). O

Setting now, for all ¢ > 0,

(1) = ¢ —I—es/0

t

t
a®(s)ds —|—5/ (b°(s),dW (s))
0
and
t t t
z°(t) :/ cs(s)ds—}—e/ ys(s)ds—l—e/ (2°(s), dW (s)),
0 0 0
collecting all the Lemmas in Section 5, and using in addition the well known identity
E([W (1) = W (s)|32) = It = slll9l1Z

together with the compactness of the embedding of H*(R) into H} _(R), we get the following
Corollary.

Corollary 5.6. For any T > 0 and any s with 0 < s < 1, the family (n°, a®,y, ¢*b°, ¢p*2°
0%, Wocece, is Light in C([0, T Hp, (R)) x (C([0,T1))? x (C([0, T]; LAR)))? x (C([0,T1))?
< C([0,T7; H,.(R)).
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6. PASSAGE TO THE LIMIT AND CONCLUSION

We now end the proof of Theorem 2.5. Fix s < 1 and T > 0; let X° = (°,a°, y°, ¢*b°, ¢*2°,
c®,z%), and consider a pair of subsequences (X, X ) cny of the family (X¢)pce<c, With
limy, o€k, = 0 and lim,_,ep, = 0. We infer from the preceding section, Prokhorov
and Skorokhod theorems that there is a subsgquence of (X¢®n, Xen W),en, still denoted
(X%, X, W),en , a probability space (Q, F,P), and random variables (X7, X3, W"), n € N
and (X1, Xy, W), with values in [C'([0,T]; H ) x (C([0,T]))* x (C([0,T]; L*))? x (C([0,T7]))%?
x C([0,T]; H. ) such that for any n € N,

)C(X{L7 X;7 Wn) = E(‘Xvskn 9 Xspn7 W)
and such that for 7 =1, 2,
Xj=X; as nooo, Pas in C([0,7]; Hf,) x (C([0,1]))*x (C([0,T]; L%)* x (C([0, T7))*
and ) ) )
W"sW as n—oo, Pas in C([0,T];HL,).
We denote by (77, a7, ,b]7 ?,¢7,27) the components of X” and by (n],a],y],b],z],c],x])
those of X], for j = 1,2. We also define

Fi= O'{X]'(S), Wj(s), 0<s<t 5= 1,2}

and

ff:a{f(ﬂ(s) Wr(s), 0<s<t, j=1, 2}-

it is easily seen that W and W™ are Wiener processes associated respectlvely with (]—})DO and
(]:t )t>0, with covariance operator ¢¢*, and that we may thus write W™ = qu” and W = ¢W,
where ch and W, are cylindrical Wiener processes on the probability space (Q, F, IP’).

It is easily checked that, for j = 1,2, ¢] and 27 satisly respectively

er(t) =co+e? /Otd?(s)ds—}—e? /t(i)?(s),dVV”(s))

0
and

(1) :/Otéy(s)dsﬁ—g?/Otgj;?(s)ds—l—5/;(2?(5),(11/1/”(5))

where €7 = gknif j =1 and e = ePrif j = 2; taking the limit in C'([0, T])as n goes to infinity,
we easily deduce

(6.1) ¢i(t)=c¢o as. for any t€[0,7] and j5=1,2
and
¢
(6.2) fj(t):/ ¢j(s)ds=cot a.s. for any te€([0,7], j=1,2.
0

Moreover, setting for j = 1,2
=inf{t <T, [&} —co|l>a or |e]7]|m > a},
then for j = 1,2, Theorem 2.1 implies
P(7} > T) =PB(r% > T) < C(a,co)(e})*T 102
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which goes to zero as n goes to infinity; hence, extracting again a subsequence if necessary, we
have

(6.3) 7'—=T as. as n—oo for j=1,2.

Also, for j =1,2 and ¢ < 7, one may easily verify that 77 satisfies the following equation:

J
=20 (e — peo) W)L+ 7 > Tan(Dutper) (37, 0)d
(6.4) eN
+ (D2 20 [2, — 02 e [B7[2,)di + (e7) 2027|272, dt

dn? = O0gLenjdl + (g?ax@,g;l — d?@ccpg;l)dt + (& —co+elyy)dt — 5;?8$((77;L)2)dt

(a7, & i) AW,
where we have set, for v € L%(R),
(aF,ef, 0o = (2], 'U)ax%y - (5?7 ’U)ac%;l + (27, v)e] 0.7} + 7}?(05'0)-
Note that (]1[0,%]”)57?)7161\1 and (]1[07;]71)6?)7161\1 are bounded sequences in L?(2;C([0,77)) for
any p > 2, while (¢747%)nen is a bounded sequence in LA(Q;C([0,T]; H?)) by Lemma 7.2; this
implies, for 7 = 1,2, that ]l[ofjn)lb(i?, ¢7,77), which converges to ¢; defined by

v = (3,0) 0000, — (bj, 0)0cpey + Tegt(0)

a.s. in C([0,T]; £Y), also converges in L%(Q2;C([0,T]; £Y)) by equi-integrability. Using this and
taking the limit as n goes to infinity in equation (6.4), we deduce that 7; satisfies, for j = 1,2
and t < T,

dﬁj = (?ILCO‘f?jdt + (g}j@zgoc() — fljacgoc())(?xﬁjdt

(6.5) ) o )
‘l‘az'goco (2]7 dWc) - acg‘oco (b]7 dWc) + (7;075¢)dwc-

Moreover, taking the limit in the equations for g7, a7, b7, z7, which are the same as (4.5) and
(4.6), we obtain

(6.6) Yyi = |8z99CO|E22(7~7]’7L008£9%O) and a; =0, j=1,2,
and on the other hand

(%, €0) = =020y | 12 (Tept (€2), uipey)

(i)jv 64) = (99007 809900)_1 (7:3075(9663)7 ‘;PCO)'

Thus, 7; satisfies the equivalent of equation (2.7). Moreover, we deduce from Lemma 5.2 that

(6.7)

E< sup I*ﬁ?(t)lfql) < (1),

tefo,T]

where C(T) is the constant appearing in Lemma 5.2. Therefore, 77 tends to 7; in

L*(Q; L*°(0,T; HY(R))) weak star.
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Now, it is not difficult to see that (2.7) has a unique solution with paths in L*(0,7; H*(R)),
a.s. such that (0) = 0. We then make use of the following lemma, which was first applied by
Gyongy and Krylov in [15].

Lemma 6.1. Let Z, be a sequence of random elements in a Polish space E equipped with the
Borel o-algebra. Then Z, converges in probability to an F-valued random element if and only
if for every pair of subsequences (Z ), Zy(r)), there is a subsequence of (Z(ny, Zy(ny) which
converges in law to a random element supported on the diagonal {(z,y) € E X E, z =y}.

We deduce that, for any s < 1, the whole family 7® converges in probability in
C([0,T]; Hf (R)), and weakly in L*(0,7; H'(R)) to a process 7 satisfying equation (2.7)
and 7(0) = 0. In addition, a® converges to 0 and y° converges to |3$9900|222(77,LCO8£9960) in
probability in C'([0,7]) , while ¢*z° converges to —|0x¢0c, |73 (Teot®)*Orpe, and ¢*b° converges
t0 (Pegs Ocpeg ) H(Teot®)* ey in probability in C([0,7]; L?). Those convergence also hold in
L?(2) by equi-integrability.

To end the proof of Theorem 2.5, it only remains to prove estimate (2.8). Note that 75
has paths in C[0,7]; HY(R)) a.s. We apply the [t6 formula — the next computations may be
justified with the help of the usual smoothing procedure, see [5] — to the functional

(1, Legm) =/ |3w|2dx+00/772d9f—2/%0776156-
R R R
It follows

(6.8) d(n; Legn) = 2(Legn, dn) + Y (Lo (1) er, $(t)ex)dt
keN

where the operator ¥ (¢) acting on L?(R) is defined as

¢(t)€k = _|8$9900 |E22 (,Tcot(¢€k)7 6I9900)6$@00 - (9‘9007 809‘900)_1 (7~Cot(¢ek)v 9‘900)309900 + 7~Cot(¢ek)'

It is easily checked, using (2.7), the self-adjointness of L., and the fact that L. 0,p. = 0
while L. 0., = —¢¢,, that

(6'9) (dnv LCon) = (9‘900 ) 609‘900)_1((7;075¢)dwv 9‘900)(99007 77) + ((,Tcot¢)dwv LCon)'

Since the above remarks also lead to

Y (Lo der, d()er)

keN
(610) = (99007 809960)_1 Z(ﬁot(éekL 9960)2 + Z(Lcolrcot(qbek)? ,TCot(qbek))
keN keN
< CHCbHi;

with a constant C' only depending on ¢, integrating (6.8), using (6.9) and taking the expecta-
tion yields:

(6.11) E (Leyn(t), n(t)) < E(Ley n(0), 7(0)) + ClI¢lI73t < CllglIzat
since 17(0) = 0. On the other hand, from (3.3),

E (Leyn(t),n(t) > vE(n(t)[3);
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indeed, it is easily checked from (2.7) that (7, ¢e) = (7, Ozpe,) = 0. We deduce
(6.12) E(In(0)3:) < Cllélidit, V20,

Coming back to (6.9), integrating in time and using Cauchy-Schwarz’s and Doob’s inequalities,
we get

E( sup /t(LCOU(S)y dn(S)))

<T Jo
< (@e, 809900)_1{]E§E}T) {/Ot(é?c%o,Lcoﬁ)(@cw (ﬁosﬁb)dw(s))r}lm
+{E§2}T) [/t(( Teos®)AW (s), Legn(s ))}2}1/2
< 2(Peps OcPeg) ™ Z/ (o 1(8))2(T: 005(¢ek)79900)2d5}1/2
keEN 12
2
-|-2 %/ Teos(Per), Legm) ds}

1/2

T
<c ol (B [ i)

with a constant C' depending only on ¢y. We conclude thanks to (6.8), (6.10), (6.12) and
another use of (3.3).
This ends the proof of Theorem 2.5. U

7. APPENDIX

We begin with the proof of Lemma 5.1. As mentioned in Section 5, we use equation (5.1)
and apply the It6 formula to the functional |775(t)|%2.

Proof of Lemma 5.1. Again, the computations below should be justified. However, this can
be done in the same way as it was described for the justification of the application of the
[t6-Wentzell formula in Section 4.

Hence, a formal application of the It6 formula to |775(t)|%2, where 7° satisfies equation (5.1),
gives

dinl. = 2(1% dn®) + tr($=(¢%)")dt
= 2(n°, 0pLeen®)dt + 2(1°, Y*0rpes — a°0eipes)dl
+2(0ppee, %) (25, dW) — 2(0cpee, 1) (b5, dW) + 2(1%, (dW) (. + 2°))

+22 Y (Tae (Duder), 1) (2%, der)di + £(Dipee, 1) |67 2% ol
£eN
_5(32%5 ) 776)|¢*ba|%2dt - 52|6z"76|%2 |¢*ZE|%2dt + Z |U6€€|i2dt
£eN
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where we have set
(7.2) Voep = Oppes (25, eg) — Ocpes (b°, deg) +0.0° (25, eg) + Toe (dey),

and we have used (0,7°, n°) = 0.
Integration of (7.1) between 0 and 7 = 7° A ¢, with *(0) = 0, and the use of (1.10) lead to
the bound (after several integrations by parts)

E(ln°(t)7.) < CE / ' {10ec o<l ()13 + 1" ()17 (5) 12 Do 1.
+a® (5)]17°(5) |21 0cpes | 12 + 2|0 (5)| 2|0l o 6727 (5) | 2
(7.3) +e|02pce 12 0° ()| 267 2% (5)] 22 + £l 02 |12 [0 (5)] 12 07D (5) 2.
Hper 7216727 (5)[32 + 10cipee 321676° ()13 + 19112
O Decpe 27 (5)] 21672 (5) | 267 (5) 12 s

the constant C' appearing in the right hand side above is an absolute constant.

Now, it follows easily from (7.3), (4.13), (4.14) and the fact that |0y@ce |1, [Op@es |1 and
|0:¢ce |1 are uniformly bounded, for ¢ € [0,7°), by a constant depending only on ¢y and «,
that

t
E( 1o, rey (D75 (D)122) < Cleo, a, 1612 / E(1+ 1o+ ()|7°(s) %) ds
and thus

(7.4) sup (g ) (1)[n°(1)[22) < Cleo, a, 6]l c1,T).
tel0,T]

We now come back to (7.1) to estimate the martingale part. We clearly have

]E( sup ‘/Ot(aa:%@csans)(f’dw)‘)

te[0,7eAT]

1/2
< ]E( sup /Ozgoca,ns)(za,dW)‘Q)
(7.5) te[0,75AT] 0 2
< of / 10,00y (s [ I () 22672 s }
T 5 1/2
< c<cO,a,u¢u,;g>{ | By a7 ) s}

and in the same way,

sup ‘ / c@cs bs dW) D
(76) 0 ‘TE/\T

< C(Co7a7|l¢”zg){ / B (10 (o)) s}



26 A. DE BOUARD AND A. DEBUSSCHE

At last,
E €
(te sup \/ (-+2°(s))])
1/2
< B( swp \Z/ o (6e0))dy(s)*)
te[0,7eAT] (eN
(7.7) | te] e
<co(XE[ <s>|L2|¢ez|des)

< c(/OTE(nm ) (s >|%z)ds)”2H¢H%g-

The conclusion of Lemma 5.1 follows then from (7.1), with the help of estimates (7.5), (7.6)
and (7.7). O

We now turn to the proof of Lemma 5.2. In the course of the proof, we will need some
additional estimates on 7®, which we state and prove now.

Lemma 7.1. Let ¢ € L} and let n°, satisfying equation (5.1), be given by Theorem 2.1. Then
for any T > 0, there is a constant C' depending only on cg, «, ”¢”£§ and T such that

E( sup |7f(t)|4L2) < C(T, e, @, HM&;)-
t<TeAT

Proof. Again, the proof is performed by applying the Ité6 formula, this time to F'(n°) with
F(u) = |u|4L27 and using the same estimates as in the proof of Lemma 5.1, together with the
martingale inequality given by Theorem 3.14 in [9]. We leave the details to the reader. U

The next lemma is the most technical to prove, and is also the reason why we need the
regularity assumption ¢ € £3.

Lemma 7.2. Assume now that ¢ € L2 and let again 1° satisfying equation (5.1) be given by
Theorem 2.1. Let T > 0, then there is a constant C(T', co, v, ||| z2) such that

(7.8) B( sup_ |02 (01 ) < (T, co, 0, |19ll3).
t<TeAT
Proof. We will use the It6 formula again, but this time we will need an higher order invariant

of the homogeneous KdV equation (1.5). Namely, we make use of £(u) defined for u € H?(R)
by

(7.9) £(u) = %/R(aguf do — 3/R(a$u)2u do + %/Ru‘l de.

We first prove the estimate

(7.10) B( sup [e02n°(1)[3:) < C(T, 0,0, 6] c3)-

t<TeAT
Again, we proceed formally and a smoothing procedure is required to justify the following
computations. Note that for u,v € H?(R), we have

E'(u) = %ﬁiu + 3(0.u)* + 6(0%u)u + u*
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and
1
&M (u).v = 388;11) + 6ud2v + 6(0,u)(9.v) + 6(02u)v + 3u?v,
and that since £(u) is an invariant for the KdV equation (1.5), we have, at least formally,
(&'(u), O2u+ 0, (u?)) = 0.

Now, applying the Ité formula to £(u®), where u® is the solution of (1.1) with «*(0) = ¢, , and
using the preceding remarks leads to

de(u?) = —e(&'(u"), dW) + Jtr(E" (u")po")dt
= —%g((};‘us’ dW) — 38((3Iu5)2, dW) — 6€(u53£u5, dW) _ 8((u5)3, dW)

+3et ) {15—8(8;1656@, deq) +6(u 07 ¢er, der) + 6((0uu) (Duer), der)
¢eN

16((92u ) dey, dee) + 3((w0) ey, qbeg)}.

(7.11)

Next, we integrate (7.11) between 0 and 7 A ¢ with 7 = 7° A 7 and
(7.12) TR =inf{t > 0, |u®({)|g2z > R}.

We then need to estimate the martingales. We first have, using integrations by parts and
Doob’s inequality,

]E( sup ](/0 (02u®, dW)) )

te[0,7AT

T N2, 72 2 02, e|2
< 4B( [ (0%, 020en)ds) < C(T, 6] )B( sup [0%u[3 ).
0 feN t<TAT

(7.13)

In the same way, but using the martingale inequality of Theorem 3.14 in [9],
TAL

(7.14) B( sup / ((9a0%)%,dW)) < C(T, 18] )E( sup [0au[?2)
t<tAT .JO t<TAT

and

TAL
E< sup/ ((82u5)u5,dW))

(7.15) tsTATJo 1/2 1/2
< C(T, )19l o) (E( sup [92u(¢)72) E( sup [u®(t)[72) .
= 1Pl el P [0; L2 p L2

t<tAT

t<tAT
Finally, using again Theorem 3.14 in [9]:

]E( sup /OTAt((us)?’,dW))

t<TtAT

st o))
C(T, 16l cpB( sup [u (1))

t<7AT

(7.16)

IN

IN
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The deterministic terms are easily estimated as follows:

sup Z/ )02 (der), cbek)ds)

t<TAT

keN
TAT
< / St qsek,abek)lds)
(7.17) keN

< cloe( [ |u6<s)|L2ds)
1/2

< O 16l (B sup w()3:)) s

t T

<TA
the expression

/ Z| (0u®(s)0(per), qbek)|ds)

keN
is estimated in the same way, after an integration by parts, an the same is true for

/ Z| (32 “( ¢ek,<bek)|ds>

keN
Finally,

(U ¥ " (0 0) e, ) d5) < CT. ol o) B sup [w (0.

t<tAT

Collecting (7.13)—(7.18), we deduce from (7.11) that
E< sup E(us(t)))
(

t<TtAT

(7.19) < T |9l {1+ B( sup uf(@)f)

t<rAT
+<E< ;E/I\)T |8£u5(t)|%2>)1/2 [1 N (]E( ;E/}\)T |u5(t)|%2)>1/2} }

On the other hand, the expression (7.9) for £(u) shows that there is a constant C' > 0, such
that for any u € H?(R),
5
(7.20) 0203, < D£(u) + OO+ Juliy)

and this together with (7.19) implies

E( sup (02 (1)[}:)

t<tAT
< %]E( sup E(us(t)))—FC(l—l-E( sup |u6(t)|}1'—11))
(7.21) t<7AT t<TAT
< 1E( sup |02 (1))
t<7AT

+CT, 6llc2) (14 E( sup [u(1)[31))

t<tAT
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Next, we use the decomposition

ut(t) = ey (2 = 2°(1) +en°(t, @ — 2°(1))

to deduce that

E( sup |0k (0)[5:)

t<tAT

< 2E< sup |8§u5(t)|%2>—|—2]E< sup |01,goce |%2)
t<7AT t<tAT

< 2E< sup |82U6(t)|%2>+C(Oé,CO)
t<7tAT

and since on the other hand

B( sup [u()lfn) < C(B( sup_|ewqlin) +E( sup en()lfn)) < Clayco)

t<TtAT t<tAT t<TtAT

it follows from (7.21) that

B( sup [e02"(1)[}) < C(Tco,a [|9]):
t<rAT 2

recalling that 7 = 7° A 7R, (7.10) is obtained by letting R go to infinity.
We now prove (7.8). We apply again the It6 formula, this time to £%(u®). This gives, using
equation (7.11):

(7.22) d(E*(u®)) = 28 (u )+ (¢

LeN

with
~ 1
Jrer = =00, der) — 3e((0u° )2, er) = 62((O2 ), der) — ((4)°, e

We integrate again (7.22) between 0 and 7 = 7° A 7g, where 7 is defined as in (7.12) and take
the expectation. Next, we estimate the martingales. By Theorem 3.14 in [9],

o s 2 ms< “(s >><a§u6<s),dW<s>>)

t<TtAT
‘T/\T
< ceE((Y / ) (020 (s), D2er)2ds) )
keNTO
< ceplgm(( [ e <>>|a£uf<s>|izds)”2)-

Now, since for u € H*(R),

9
£(w) < £102ulfs + CL+ Julfp),
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the preceding term is bounded above by

C'quHE%{E((/OTM|3§u5(s)|61;2d8)1/2)

TAT 1/2
(7.23) +E<(/ 020 3 (1 + u”(s) ) ds) %) }

0

3/4
< O, o, |19llep) {1+ E( sup [026()13:) + (B( sup 020 ()]E:)) "
t<tAT t<rtAT
where we have used the fact that
(7.24) sup |u®(t)|g < Cco, ).
t<tAT

We prove in the same way that

o sup [ e ) (@t ()2, W ()

(725) t<tAT JO
< (T, dlley) (1+ (B( sup |02 ()[12))""?)
t<tAT
and
TAL
B( sup / £(u (5)) (" (5)92u (5), AW (5)) )
(7.26) tsTaTJo 3/4
< O eo, 0, ||9llen) {1+ E( sup (026 ()2 ) + (B( sup 02 (0)]E:)) " }.
t<7tAT t<TtAT

Lastly, with the same arguments

B sup [ E(u(s)(u)(s), AW (s))
(727) <t§T/I\)T/O ) a4
< O a6l (14 (B sup (2 0]f:))*").

As for the deterministic integrals arising in (7.22),

sup Z ) (O2dey, qbek)ds)

t<7’/\T kEN

‘T/\T
< clelE( | |5<uf<s)>|ds)sc<T,cO,a,u¢u,;g)

by (7.10), and the same is true for

(7.28)

]E( sup Z/TME(us(s))(us(s)(ﬁqﬁek,cbek)ds)

t<tAT keNvO

since (7.24) holds. The terms

]E< sup Z/TME(us(s))(azus(s)axqbek,qﬁek)d8>

t<TAT kEN 0
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and

]E( sup Z/TME(UE(S))((UE)Z(S)qbek,qbek)ds>

tSTATkeN 0

are estimated in the same way and

tiE/I\)TkEZ;\I/ ) (07 (5) e, ¢€k)ds)
o s ) g ) )

3/
c<T,cO,a,u¢u,;g>{1+(E(t;ugTwzuf(>|L2>) FE( sup (20 (1)]72) -

t<TtAT

(7.29)

IN

IN

Finally, the terms arising from the It6 correction in (7.22) are bounded above, arguing as
before, by the right hand side of (7.29).

Collecting (7.23), (7.25)—(7.29) yields

E< sup 52(u5(t))>

t<TtAT

SE( sup [02u°(1)[32) + C(T, o, 0llcy) (1+ E( sup (020 (1)[22)).
t<rtAT t<TtAT

IN

We conclude thanks to the fact that for u € H?(R)

50
02ulfs < 37w + CL+ [ulfp),

that the same estimate is true for E( sup;« 7 [02u®(t)|12), and the lemma follows, after using
again the decomposition

ut(t) = pee (2 = 2°(1)) + e (L, 2 — 2°(1))
and letting R go to infinity.

We are now in position to prove Lemma 5.2.
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Proof of Lemma 5.2. We apply the It6 formula to |8,7°(t)|3, where 7 satisfies equation (5.1).
We get

dlaa:776|%2
= 2002, dn®) + ) 1004 Fdl
LeN
= =200, 0, L) — 2(020°, Y 0ppee — a%0epee )t + 26(0%n%, 0.(n°)?)dt
7.30
( ) —2(020%, Dppee ) (25, dW) + 2(0207, 0002 ) (b5, dW) — 2(92n7, (dW) (L, . + )

26 Y (020F, Toe (Due0)) (55, der)dt — (02, 020 )| 6" 22t
LeN
+e(02°, 02ee )| ¢*b° |2t — 20207 |2,] 6% 2% 20dl + ) | |0:4" €| 00
LeN
where 9° is defined as in (7.2), and

O2L.e = —0 + 02 — 20002 — 4(Dpper )0y — 2(0200e ).

Next, we integrate (7.30) between 0 and 7° A ¢, and take the expectation; using several
integrations by parts, it is not difficult to see that the resulting expression is bounded above

by

€

TEAL
CE/@ (10Z0e 2o 117 () [ 771 + 19" ()11 02717 (5) | 22102 pes | 12 + |0 (5) (102717 ()| 12| 0z Oeipes | 12
0207|1207 £2[0:07| 12 + €| Dl 22| 0on®| 12 [6%2%| 12 + €|0Z e | £2100n°| L2167 2°[ 25
—|—€|0 GC¢05|L2|8I776|L2|¢*[)6|%2 + quHZE% —I—€|8z775|L2|83238Cg005|L2|¢*25|L2|¢*b5|L2)d5.

Using then (4.13), (4.14) and the fact that |02pce |1, |0,0cpce | g1 and |0,0% |12 are bounded
uniformly for ¢ < 7% by a constant depending only on ¢p and «, we deduce that for ¢t < T,

B(1or (00,7 (O1F)
< O ol {1+ [ Bl (o)) ds

t

[ B 1 (9)|20%0 () [22) BN ey ()7 (5) 1) B (U ey () 0" (5)] 22 s .

0
By Lemmas 5.1, 7.1, 7.2 and the Gronwall Lemma, we obtain
SEJP]]E(lloTe 100 (1)]F1) < C(T co, 0, (|9l c2)-
telo,

The martingale part is estimated in the same way as in the proof of Lemma 5.1, using
integrations by parts. O
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