Spectral deviations for the damped wave equation - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2009

Spectral deviations for the damped wave equation

Nalini Anantharaman
  • Fonction : Auteur
  • PersonId : 1123238

Résumé

We prove a Weyl-type fractal upper bound for the spectrum of the damped wave equation, on a negatively curved compact manifold. It is known that most of the eigenvalues have an imaginary part close to the average of the damping function. We count the number of eigenvalues in a given horizontal strip deviating from this typical behaviour; the exponent that appears naturally is the `entropy' that gives the deviation rate from the Birkhoff ergodic theorem for the geodesic flow. A Weyl-type lower bound is still far from reach; but in the particular case of arithmetic surfaces, and for a strong enough damping, we can use the trace formula to prove a result going in this direction.
Fichier principal
Vignette du fichier
DWE1.pdf (369.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00375017 , version 1 (10-04-2009)

Identifiants

Citer

Nalini Anantharaman. Spectral deviations for the damped wave equation. 2009. ⟨hal-00375017⟩
148 Consultations
166 Téléchargements

Altmetric

Partager

More