Extinction of solutions of semilinear higher order parabolic equations with degenerate absorption potential
Résumé
We study the first vanishing time for solutions of the Cauchy-Dirichlet problem to the semilinear $2m$-order ($m \geq 1$) parabolic equation $u_t+Lu+a(x) |u|^{q-1}u=0$, $02m$ and $\displaystyle \int_0^1 s^{-1} \text{meas} \{x \in \Omega : |a(x)| \leq s \}^\frac{2m}{N} ds < + \infty$, then the solution $u$ vanishes in a finite time. When $N=2m$, the condition becomes $\displaystyle \int_0^1 s^{-1} \left( \text{meas} \{x \in \Omega : |a(x)| \leq s \}\right) \left( -\ln \text{meas} \{x \in \Omega : |a(x)| \leq s \}\right) ds < + \infty$.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...