Examples of $\mathcal{C}^r$ interval map with large symbolic extension entropy - Archive ouverte HAL
Article Dans Une Revue Discrete and Continuous Dynamical Systems - Series A Année : 2010

Examples of $\mathcal{C}^r$ interval map with large symbolic extension entropy

David Burguet
  • Fonction : Auteur
  • PersonId : 830437

Résumé

For any integer $r\geq2$ and any real $\epsilon>0$, we construct an explicit example of $\mathcal{C}^r$ interval map $f$ with symbolic extension entropy $h_{sex}(f)\geq\frac{r}{r-1}\log\|f'\|_{\infty}-\epsilon$ and $\|f'\|_{\infty}\geq 2$. T.Downarawicz and A.Maass \cite{Dow} proved that for $\mathcal{C}^r$ interval maps with $r>1$, the symbolic extension entropy was bounded above by $\frac{r}{r-1}\log\|f'\|_{\infty}$. So our example prove this bound is sharp. Similar examples had been already built by T.Downarowicz and S.Newhouse for diffeomorphisms in higher dimension by using generic arguments on homoclinic tangencies.
Fichier principal
Vignette du fichier
arxiv.pdf (590.09 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00370669 , version 1 (24-03-2009)

Identifiants

Citer

David Burguet. Examples of $\mathcal{C}^r$ interval map with large symbolic extension entropy. Discrete and Continuous Dynamical Systems - Series A, 2010, 26 (3), pp.873-899. ⟨10.3934/dcds.2010.26.873⟩. ⟨hal-00370669⟩
169 Consultations
139 Téléchargements

Altmetric

Partager

More