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Examples of Cr interval map with large symbolic

extension entropy

David Burguet,
CMLS - CNRS UMR 7640

Ecole polytechnique
91128 Palaiseau Cedex France

Abstract : For any integer r ≥ 2 and any real ε > 0, we construct an explicit example of Cr
interval map f with symbolic extension entropy hsex(f) ≥ r

r−1 log ‖f ′‖∞ − ε and ‖f ′‖∞ ≥ 2.
T.Downarawicz and A.Maass [11] proved that for Cr interval maps with r > 1, the symbolic
extension entropy was bounded above by r

r−1 log ‖f ′‖∞. So our example prove this bound is sharp.
Similar examples had been already built by T.Downarowicz and S.Newhouse for diffeomorphisms
in higher dimension by using generic arguments on homoclinic tangencies.

1 Introduction

1.1 Entropy of symbolic extensions

Let T be a dynamical system defined on a compact metrizable space X. We denote M(X,T )
the set of invariant probability measures of (X,T ) endowed with the weak star topology and
Me(X,T ) ⊂M(X,T ) the subset of ergodic measures. A symbolic extension (Y, S) of (X,T ) is an
extension which is a subshift of a full shift over a finite alphabet. Given a dynamical sytem one
can wonder if it admits a symbolic extension and how far this extension is from the initial system
in the point of view of entropy. The symbolic extension entropy function estimates this defect.
Let π : (Y, S) → (X,T ) be a symbolic extension. We consider the fonction hπext : M(X,T ) → R
defined by hπext(µ) := supπ∗ν=µ h(ν), where h denotes the usual Kolmogorov-Sinai entropy. Then
the symbolic extension entropy function hsex :M(X,T )→ R is defined as follows :

hsex(µ) := inf
π:(Y,S)→(X,T )

hπext(µ)

where the infinimum is taken over all symbolic extensions (Y, S) of (X,T ) (when there is no
symbolic extension, we put hsex ≡ +∞).

Finally the topological symbolic extension entropy hsex(T ) is the infimum of the topological
entropy of the symbolic extensions of (X,T ) :

hsex(T ) = inf
π:(Y,S)→(X,T )

htop(T )

In fact the topological symbolic extension entropy hsex(T ) is equal to the supremum of the
symbolic extension entropy function hsex [1].

M.Boyle and T.Downarowicz [1] reduce the problem of existence of symbolic extensions to the
study of the convergence of the entropy computed at finer and finer scale. Let us explain more
precisely their main result.

Let hk :M(X,T )→ R be the Katok entropy (cf Appendix) computed with precision εk where
(εk)k is a decreasing sequence converging to zero. One can define by induction the following
transfinite sequence (for a real map f onM(X,T ) we denote f̃ the smallest upper-semicontinuous
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function larger than f 1) :

• u0 := 0 ;

• if α is a successor ordinal 2:

uα := lim
k→+∞

˜uα−1 + h− hk

• if α is a limit ordinal :

uα := s̃up
β<α

uβ

The sequence (uα)α is stationary at some countable step α∗ (the ordinal α∗ is called the order
of accumulation of (X,T )). The main result of [1] can then be stated in the following way :

hsex = h+ uα∗ (1)

1.2 Tail entropy

The tail entropy [15] of a dynamical system estimates the entropy appearing at arbitrarily small
scales :

h∗(T ) = lim
ε→0

lim
δ→0

lim sup
n→+∞

1
n

log sup
x∈X

r(n, δ,B(x, n, ε))

where B(x, n, ε) := {y ∈ X, ∀k = 0, ..., n − 1, d(T kx, T ky) < ε} is the usual Bowen ball. In fact
the tail entropy satisfies also a variational principle [9, 4] and can be also written in terms of u1

and the sequence hk :
h∗(T ) = lim

k→+∞
‖h− hk‖∞ = sup

µ∈M(X,T )

u1(µ) (2)

A system is said to be asymptotically h-expansive if h∗(T ) = 0. It was proved by M. Boyle, D.
Fiebig, U. Fiebig [3] that any asymptotically h-expansive system satisfies hsex = h. Moreover it
follows from Yomdin’s theory [7] that h∗(T ) = 0 for C∞ dynamical systems defined on a compact
smooth manifold M and therefore hsex = h for such systems. In fact Yomdin’s theory provides us
the following upper bound on the tail entropy for Cr systems, which is due to J.Buzzi [7] :

h∗(T ) ≤ dim(M)R(T )
r

(3)

where R(T ) := limn
1
n log ‖(Tn)′‖∞ for any riemmanian metric ‖‖ on M . This upper bound (3)

is known to be sharp [14],[7].

1.3 Existence of symbolic extensions for Cr maps

It is still unknown if general Cr dynamical systems admit symbolic extensions. But it was recently
proved by A.Maass and T.Downarowicz in the case of interval maps [11]. If ν is an ergodic measure
of a C1 interval map f , one can define its Lyapounov exponent χ(ν) :=

∫
log |f ′|dν. We consider

χ+ = max(χ, 0) and we denote χ+ its harmonic extension onM([0, 1], f) (the function χ+ is given
by the formula χ+(µ) = limn→+∞

1
n

∫
max(log |fn|′(x), 0)dµ(x) for all µ ∈ M([0, 1], f)). Observe

that χ+(µ) ≤ log ‖f ′‖∞.

1if f is bounded, then the function f̃ can be written in the following form : f̃(µ) = lim supν→µ f(ν) ; if f is

unbounded, then we put f̃ ≡ +∞
2in this case we denote α− 1 the ordinal preceding α



Examples of Cr interval map with large symbolic extension entropy 3

Theorem 1 [11] Let r > 1. Let f : [0, 1] → [0, 1] be a Cr map, then for all ordinal α and for all
µ ∈M([0, 1], f),

uα(µ) ≤ χ+(µ)
r − 1

(4)

Moreover for all n ∈ N,

un(µ) ≤
n∑
k=1

χ+(µ)
rk

(5)

In particular (according to (1)),

hsex(f) ≤ htop(f) +
log ‖f ′‖∞
r − 1

In higher dimension we conjecture :

Conjecture 1 Let r > 1. Let T : M → M is a Cr map, then for all ordinal α and for all
µ ∈M(X,T ),

uα(µ) ≤
∑d
i=1 χ

+
i (µ)

r − 1

where (χi)i=1,...,d denote the d Lyapounov exponents.
Moreover forall n ∈ N,

un(µ) ≤

(
n∑
k=1

1
rk

) d∑
i=1

χ+
i (µ)


In particular,

hsex(T ) ≤ htop(T ) +
logR(T )
r − 1

(6)

1.4 Previous examples of higher dimensional diffeomorphisms with large
symbolic extension entropy

S.Newhouse and T.Downarowicz [10] built examples of Cr (r > 1) diffeomorphism on any manifold
of dimension ≥ 2 such that supµ∈M(X,T ) hsex(µ) is equal to dim(M)R(T )r

r−1 . Therefore their exam-
ples would prove the upper bound (6) is sharp. They also gave C1 examples without symbolic
extensions. Their examples are generic and the construction use homoclonic tangencies.

M.Boyle and T.Downarowicz [2] built explicitly a Cr example on a manifold of dimension 4
with hsex(T ) > htop(T ) by adapting an example of Cr diffeomorphism without measure of maximal
entropy due to M.Misiurewicz [14].

1.5 Main statements

In the following paper we prove that Theorem 1 is sharp.

Theorem 2 Let r ∈ N∗. There exists a Cr interval map fr : [0, 1]→ [0, 1] fixing 0, such that for
all integers n ≥ 1 :

un(δ0) =

(
n∑
k=1

1
rk

)
log ‖f ′r‖∞ > 0

where δ0 ∈M([0, 1], fr) denotes the dirac measure at the point 0.
In particular, if ω is the first ordinal with infinite cardinal, we have :
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• if r > 1, then uω(δ0) = log ‖f ′r‖∞
r−1 ;

• if r = 1, then uω ≡ +∞ and therefore f1 does not admit symbolic extensions.

Recall that χ+(µ) ≤ log ‖f ′r‖∞ for all invariant measure µ. Therefore the inequalities (4) and
(5) of Theorem 1 are sharp for Cr interval maps.

Remark 1 One could also wonder if for all Cr (r > 1) interval maps f and for all n ∈ N we have
supµ∈M([0,1],f)(un+1 − un)(µ) ≤ log ‖f ′‖∞

rn+1 . In fact it is false : we explain in Section 3.5 how to
modify the previous example to get a counter-example.

Recall that T.Downarowicz and A.Maass (Theorem 1) obtain the following upper bound on
the topological symbolic extension entropy of a Cr (r > 1) interval map f :

hsex(f) ≤ htop(f) +
log ‖f ′‖∞
r − 1

≤ r log ‖f ′‖∞
r − 1

By using the construction of the previous example we prove this upper bound is sharp in the
following sense :

Theorem 3 Let r ≥ 2 be an integer. For any ε > 0, there exists a Cr interval map fr,ε with
‖f ′r,ε‖∞ ≥ 2 such that :

hsex(fr,ε) ≥
r log ‖f ′r,ε‖∞

r − 1
− ε

But we do not know if our example can provide a new one satisfying hsex(fr) = htop(fr) +
log ‖f ′r‖∞
r−1 .

Our examples are in the spirit of those of T.Downarowicz and S.Newhouse : we accumulate
horseshoes at different small scales. The construction of such horseshoes is similar of examples
due to J.Buzzi of Cr interval maps without measures of maximal entropy [7],[17].

2 Sex entropy by accumulating small horseshoes

We recall first the main idea used by S.Newhouse and T.Downarowicz [10] to get a lower bound
of the symbolic extension entropy by accumulating entropy at small scales. The following lemma
is valid for general dynamical systems. Recall that hk denotes the Katok entropy at some scale
εk where (εk)k is a decreasing sequence converging to zero. Also if p is a periodic point we denote

O(p) the orbit of p and γp :=
1

]O(p)

∑
q∈O(p)

δq the periodic measure associated to p.

Lemma 1 Let T : X → X be a continuous map defined on a compact metrizable space X. Let µ
be an invariant probability measure.

We assume that for all k ∈ N, there exists periodic points (p(i1,...,i2k+1))(i1,...,i2k+1)∈N2k+1 and
invariant probability measures (µ(i1,...,i2k))(i1,...,i2k)∈N2k (we put N0 = {∅} and µ∅ = µ) such that :

1. for all (i1, ..., i2k) ∈ N2k, the periodic measures γp(i1,...,i2k+1) are converging to µ(i1,...,i2k)

when i2k+1 goes to +∞ ;

2. for all (i1, ..., i2k+1) ∈ N2k+1, the measures µ(i1,...,i2k+2) are converging to γp(i1,...,i2k+1) when
i2k+2 goes to +∞ ;
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3. for all q ∈ N,
lim

i2k→+∞
hq(µ(i1,...,i2k)) = 0

4. the limits lim
i1→+∞

(
lim

i2→+∞
...

(
lim

i2k→+∞
h(µ(i1,...,i2k))

)
...

)
exist.

Then for all n ∈ N :

un(µ) ≥
n∑
l=1

lim
i1→+∞

(
lim

i2→+∞
...

(
lim

i2l→+∞
h(µ(i1,...,i2l))

)
...

)
(7)

Proof : We prove (7) by induction on n. Assume the lemma for n and prove it for n + 1. By
definition, we have :

un+1(µ) = lim
q

˜h− hq + un(µ)

Then for all q ∈ N we get by using the first and the second hypothesis and by upper semi-continuity
of ˜h− hq + un :

˜h− hq + un(µ) ≥ lim sup
i1

(
lim sup

i2

(h− hq + un)(µ(i1,i2))
)

Then according to the third hypothesis :

˜h− hq + un(µ) ≥ lim sup
i1

(
lim sup

i2

(h+ un)(µ(i1,i2))
)

and as the limits limi1

(
limi2 h(µ(i1,i2))

)
exist, we obtain :

˜h− hq + un(µ) ≥ lim
i1

(
lim
i2
h(µ(i1,i2))

)
+ lim sup

i1

(
lim sup

i2

un(µ(i1,i2))
)

We apply finally the induction hypothesis to each measure µ(i1,i2) to get :

un(µ(i1,i2)) ≥
n∑
l=2

lim
i3→+∞

(
lim

i4→+∞
...

(
lim

i2l→+∞
h(µ(i1,...,i2l))

)
...

)
We conclude that :

un+1(µ) ≥
n∑
l=1

lim
i1→+∞

(
lim

i2→+∞
...

(
lim

i2l→+∞
h(µ(i1,...,i2l))

)
...

)
�

In the following we also use the following equivalent version of the previous lemma :

Lemma 2 Let f : X → X be a continuous map defined on a compact metrizable space X with a
fixed point p.

We assume that for all k ∈ N, there exists periodic points (p(i1,...,i2k+1))(i1,...,i2k)∈N2k and in-
variant measures (µ(i1,...,i2k+1))(i1,...,i2k+1)∈N2k+1 such that :

1. for all (i1, ..., i2k−1) ∈ N2k−1, the periodic measures γp(i1,...,i2k) are converging to µ(i1,...,i2k−1)

when i2k goes to +∞ ;

2. for all (i1, ..., i2k) ∈ N2k, the measures µ(i1,...,i2k+1) are converging to γp(i1,...,i2k) when i2k+1

goes to +∞ (limn µn = δp for k = 0) ;
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3. for all q ∈ N,
lim

i2k+1→+∞
hq(µ(i1,...,i2k+1)) = 0

4. the limits lim
i1→+∞

(
lim

i2→+∞
...

(
lim

i2k+1→+∞
h(µ(i1,...,i2k+1))

)
...

)
exist.

Then for all n ∈ N :

un(δp) ≥
n−1∑
l=0

lim
i1→+∞

(
lim

i2→+∞
...

(
lim

i2l+1→+∞
h(µ(i1,...,i2l+1))

)
...

)

3 Our construction on the interval

3.1 Horseshoe for interval maps

The following notion of horseshoe for interval maps is due to M.Misiurewicz.

Definition 1 Let f be an interval map. A family J = (J1, ..., Jp) of closed disjoint intervals is
called a p horseshoe if Jk ⊂ f(Ji) for all j, k.

To simplify the notations we mean sometimes by J the union of the intervals defining the
horseshoe J . Remark that any subfamily K of J is itself a horseshoe. If J = (J1, ..., Jp) is a p
horseshoe ordered increasingly, i.e. if i < j then xi < xk for all (xi, xk) ∈ Ji × Jk, we denote by
J ′ the p− 1 horseshoe (J1, ..., Jp−1).

Let us denote HJ :=
⋂
n∈Z T

nJ and ({1, ..., p}N, σ) the one sided shift with p symbols. The
map π : (HJ , T )→ (Σ+

p , σ) defined by (π(x))k = q if fk(x) ∈ Jq is a semi-conjugacy. In particular
htop(f) ≥ log p. In fact horseshoes characterize entropy of continuous interval maps [13] : if f
is a continuous interval map with entropy htop(f) > 0 then for all h < htop(f) there exists a p
horseshoe for fN with log(p)/N > h .

In our construction we consider horseshoes of the following simple form.

Definition 2 Let f : [0, 1] → [0, 1] be a Cr interval map and let p and N be integers. A (p,N)
quasi linear horseshoe (resp. a (p,N) linear horseshoe) for f is a p horseshoe ordered in-
creasingly J = (J1, ..., Jp) for fN such that :

• |J1| = |J2| = ... = |Jp| ;

• f(J1) = f(J2) = ... = f(Jp) ;

• f is increasing on Ji when i is odd and f is decreasing on Ji when i is even ;

• f is affine on Ji for all i = 1, ..., p− 1 (resp. for all i = 1, ..., p) ;

• there exists Ji < bi < Ji+1 such that f (l)(bi) = 0 for l = 1, ..., r and i = 1, ..., p− 1 ;

• fN−1
/f(J1)

is affine.

The slope of a quasi linear horseshoe J is defined by s(J) := ‖(fN/J1
)′‖∞.

We will write HN
J the compact fN invariant set associated to a (p,N) (quasi-) linear horseshoe

J = (J1, ..., Jp) for f , that is HN
J :=

⋂
n∈N f

−nNJ , and we denote HJ the compact f invariant set
associated, that is HJ :=

⋃
k=0,...,N−1 f

k(HN
J ).

We will use the following technical lemma :
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Lemma 3 Let f : [0, 1] → [0, 1] be a Cr interval map and J = (J1, ..., Jp) a (p,N) quasi linear
horseshoe for f with slope s(J) > 1. Then there exists a sequence of periodic points (pn)n∈N in J ′

with periods (NPn)n∈N and a sequence of points (p′n)n∈N in J ′ such that :

• the periodic measures γpn converge to the measure of maximal entropy of HJ′ ;

• the sequence (f(pn))n∈N is monotone ;

• fNPn is increasing and affine on [pn, p′n] ;

• Jp ⊂ fNPn([pn, p′n]).

Proof : Put K := f(J1) = ... = f(Jp). We assume fN−1
/K is increasing (one can easily adapt the

proof in the decreasing case).The map π : (HN
J , f

N ) → ({1, ..., p}N, σ) defined by (π(x))k = q if
fNk(x) ∈ Jq for all k ∈ N is a semi-conjugacy. As fN is expanding on each element of J ′ (because
s(J) > 1) the restriction of π on HN

J′ is one-to-one and therefore π : (HN
J′ , f

N )→ ({1, ..., p−1}N, σ)
is a conjugacy. It is well-known that the periodic measures are dense in M(({1, ..., p − 1}N, σ)) :
in particular there exists a sequence (qn)n∈N of periodic points of ({1, ..., p− 1}N, σ) with periods
(Pn)n∈N such that the associated periodic measures converge to the measure of maximal entropy µ
of ({1, ..., p−1}N, σ). One can also clearly arrange this sequence such that for all n ∈ N the integer
]{k ∈ [0, Pn − 1], (σkqn)0 is even} is even. We put pn = π−1(qn) so that pn ∈ J ′ is a periodic
point of f with period NPn. Moreover fNPn is increasing near pn because we assume fN−1

/K is
increasing and that ]{k ∈ [0, Pn − 1], (σkqn)0 is even} is even. By extracting a subsequence one
can also assume that (f(pn))n∈N is monotone.

The periodic measures γpn converge to 1
N

∑N−1
k=0 f∗kπ∗−1µ ∈ M([0, 1], f) which is a measure

of maximal entropy of HJ′ . Indeed, as π is a conjugacy from (HN
J′ , f

N ) to ({1, ..., p − 1}N, σ)
we have h(π∗−1µ, fN ) = h(µ, σ) = htop({1, ..., p − 1}N, σ) = htop(fN , HN

J′). Finally it is easily
seen that h( 1

N

∑N−1
k=0 f∗kπ∗−1µ, f) = 1

N h(π∗−1µ, fN ) and htop(fN , HN
J′) = Nhtop(f,HJ′) so that

h( 1
N

∑N−1
k=0 f∗kπ∗−1µ, f) = htop(f,HJ′).

Observe now that fN is affine on each interval which is a connected component of
⋂Pn−1
k=0 f−kNJ ′

because f is affine on each element of J ′. Moreover the image by fNPn of any such interval con-
tains Ji for all i = 1, ..., p because J is a horseshoe for fN . Let us denote [p′′n, p

′
n] the interval

containing pn. As fNPn is increasing near pn and as Jp stands at the right of pn we conclude that
Jp ⊂ fNPn([pn, p′n]).

�

3.2 A model of Cr interval maps with entropy of first order

The question of continuity of the entropy for smooth dynamical systems was studied early on.
M.Misiurewicz [14] gave the first examples of Cr diffeomorphisms defined on a compact mani-
fold of dimension 4 without measures of maximal entropy. Then S.Newhouse [16] proved, using
Yomdin’s theory, that the entropy function was upper semi-continuous for C∞ systems. Counter-
examples for interval maps appear much later. In his thesis [8] J.Buzzi built an example of Cr
maps without measure of maximal entropy (see also [17]).

In Misiurewicz’s and Buzzi’s examples the stategy is the same : you construct ”smaller and
smaller horseshoes” converging to a fixed point such that their entropies converge increasingly
to the topological entropy. By a ”small” horseshoe J we mean that the orbit of the associated
compact invariant set HJ is contained in the ε-neighborhood of some periodic orbit for ε > 0 small.

In this section we recall the main idea in the example of J.Buzzi, which will be a model of
”first order” in our example. We first begin with the following easy lemma, which will be useful
in the next constructions :
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Lemma 4 1. There exists a constant 1 ≥M1 > 0 with the following properties.

Let a, b ∈ [0, 1]. Let α ∈ R+ and c, d ∈ R with |c− d| ≤M1α|a− b|r. Then there exists a C∞
monotone map f : R→ R such that :

• ‖f‖r := maxk=1,...,r ‖f (k)‖∞ ≤ α ;

• f(a) = c, f(b) = d ;

• f (k)(a) = f (k)(b) = 0 for k = 1, ..., r.

2. There exists a constant 1 ≥ M2 > 0 with the following properties. Let a, b ∈ [0, 1]. Let
α ∈ R+, c ∈ R and c′ ∈ R with c′(b− a) ≥ 0 and |c′| ≤ M2α|a− b|r−1. Then there exists a
C∞ monotone map f : R→ R such that :

• ‖f‖r := maxk=1,...,r ‖f (k)‖∞ ≤ α ;

• f(a) = c, |f(a)− f(b)| ≤ α|a− b|r ;

• f ′(a) = c′, f ′(b) = 0 ;

• f (k)(a) = f (k)(b) = 0 for k = 2, ..., r.

Proof : (1) We are easily reduce to the case a < b and c < d. Let F : R → R be a C∞ non-
decreasing map such that F (0) = 0 and F (1) = 1 and F (k)(0) = F (k)(1) = 0 for k = 1, ..., r. Put
M1 := min( 1

‖F‖r , 1). Fix a, b, c, d, α as in the statement (1) of the lemma. We define f as follows

f := |c− d|F (|a− b|−1(.− a)) + c

Clearly f (k)(a) = f (k)(b) = 0 for k = 1, ..., r and f(a) = c, f(b) = d. Moreover ‖f (k)‖∞ =
|a− b|−k|c− d|‖F (k)‖∞ ≤ α for all k = 1, ..., r.

(2) We are easily reduce to the case a < b and c′ > 0. Let F : R→ R be a C∞ non-decreasing
map such that F (0) = 0, F (1) = 1, F ′(0) = 1, F ′(1) = 0 and F (k)(0) = F (k)(1) = 0 for k = 2, ..., r.
Put M2 := min( 1

‖F‖r , 1). Fix a, b, c, c′, α as in the statement (2) of the lemma. We define f as
follows

f := c′|a− b|F (|a− b|−1(.− a)) + c

Clearly f (k)(a) = f (k)(b) = 0 for k = 2, ..., r and f(a) = c, f ′(a) = c′. We put d := f(b). Moreover
‖f (k)‖∞ = c′|a − b|−k+1‖F (k)‖∞ ≤ α for all k = 1, ..., r and |f(a) − f(b)| = |

∫
[a,b]

f ′(t)dt| ≤
c′|a− b|‖F ′‖∞ ≤ α|a− b|r.

�

We can now explain our model :

Proposition 1 Let ε > 0, λ > 1, 0 ≤ p < p′ < q′ < q ≤ 1 and let f : [0, 1] → [0, 1] be a Cr
interval map, such that p is a periodic point of f of period P and f(q) = p, f (k)(q) = f (k)(q′) = 0
for k = 1, ..., r. We also assume there exists an integer S such that :

• fS(p) = p, i.e. S is a multiple of P ;

• fS is increasing and affine on [p, p′] with slope λ ;

• q ∈ fS([p, p′]).

Then there exists a Cr interval map g such that f = g outside the interval ]q′, q[, ‖f ′‖∞ = ‖g′‖∞
and ‖f−g‖r ≤ ε. Moreover there exist a strictly increasing sequence of integers (Tn)n∈N, a strictly
increasing sequence of even integers (Nn)n∈N, a sequence of intervals ([xn, yn])n∈N and a sequence
of linear horseshoes (Jn)n∈N such that :

• f (l)(xn) = f (l)(yn) = 0 for all n ∈ N and l = 1, ..., r ;
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• Jn ⊂ [xn, yn] ⊂ [q′, q] for all n ∈ N and lim
n→+∞

xn = lim
n→+∞

yn = q ;

• Jn is a linear (Nn, STn + 1) horseshoe for g with slope λSTn

n2(3n2Nn)r−1 ;

• lim
n→+∞

htop(Jn) = lim
n→+∞

logNn
Tn

=
log λ
r

;

• Invariant probability measures supported by HJn converge to the periodic measure associated
to p when n goes to infinity.

xn

Drawing 2 : Accumulation of small horsehoes

yn
qxn+1yn-1

Drawing 4

Drawing 5

graph of g near q

Proof :
Let n0 be large enough such that q− 1

n0
> q′. For all n ≥ n0 we put g equal to a Nn zig zag of

height 1
n2(2n2Nn)r on [xn, yn] := [q − 1

n , q −
1
n + 1

3n2 ] as described on the above picture (Drawing
2).

More precisely for all i = 0, ..., Nn − 1 the map g is affine on the interval Jni := [xn + (i +
1
4 ) 1

3n2Nn
, xn + (i + 3

4 ) 1
3n2Nn

] with slope (−1)i

n2(3n2Nn)r−1 and g(Jn1 ) = ... = g(JnNn) = [an, an +
1

2n2(3n2Nn)r ] (we will specify an later). Then according to Lemma 4 (2), one can extend g on the
whole interval [xn, yn] such that :

• g(k)(xn + i 1
3n2Nn

) = 0 for k = 1, ..., r and for i = 0, ..., Nn ;

• ‖(g)/[xn,yn]‖r ≤ 4r−1

M2n2 ;

• g(yn) = g(xn) ∈ [an − 1
M2n2(3n2Nn)r , an].

We choose an such that f maps [an, an+ 1
2n2(3n2Nn)r ] on the expanding part [p, p′] of fS during

a time Tn and then comes back on [xn, yn], that is fSTn([an, an + 1
2n2(3n2Nn)r ]) ⊃ [xn, yn]. We

choose Tn > Tn−1 minimal for this property. This can be done because q ∈ fS([p, p′]). In this way
we obtain for all integers n > n0 a linear horseshoe Jn = (Jn1 , ..., J

n
Nn

) for gSTn+1. The condition
on Tn is :
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1
n2
≤ λTn 1

2n2(3n2Nn)r ≤ λ
1
n2

(8)

and the condition on an is :

fSTn(an) = xn

that is :
λTn(an − p) = xn − p

We deduce from the inequality (8) that lim
n→+∞

logNn
Tn

=
log λ
r

. One can also replace Nn by

Nn − 1 to ensure Nn is even.
By using Lemma 4(1) one can now extend g in a Cr way on the whole interval [xn0 , q] such

that for all n ≥ n0 :

‖g/[yn,xn+1]‖r ≤ 1
M1

∣∣∣∣g(yn)− g(xn+1)
(yn − xn+1)r

∣∣∣∣
≤ 6r

M1
n2r

(
an − an+1 +

1
M2n2(3n2Nn)r

)
≤ 6r

M1
n2r

(
λ−Tn +

1
M2n2(3n2Nn)r

)
≤ 6r(1 + 1/M2)

M1Nr
n

We extend g in a Cr way on [q′, xn0 ] by putting for all x ∈ [q′, xn0 ] :

g(x) = f(q′) +
g(xn0)− f(q′)
f(q)− f(q′)

(
f

(
q − q′

xn0 − q′
(x− q′) + q′

)
− f(q′)

)
One checks easily that g(q′) = f(q′) and g(k)(q′) = g(k)(xn0) = 0 for k = 1, ..., r.
We conclude the proof by choosing n0 large enough such that 6r(1+1/M2)

M1Nrn0
≤ ε and

‖(f − g)/[q′,xn0 ]‖r ≤ ε.
�

3.3 Proof of Theorem 2

We build a collection of Cr maps (gk)k∈N∪{∞} defined on [0, 1] fixing 0 and with first derivative
bounded by 5. For all l ∈ N and for all (i1, ..., i2l+2) ∈ N2l+2 there exist points pi1,...,i2l+2 , intervals
[xi1,...,i2l+1 , yi1,...,i2l+1 ], collections of disjoint closed intervals Ji1,...,i2l+1 , integers Pi2l+2 , Ti2l+1 and
even integers Ni2l+1 such that for all k ∈ N ∪ {∞} and all integers 0 ≤ l ≤ k we have :

• pi1,...,i2l+2 ∈ J ′i1,...,i2l+1
is a periodic point of g

Si1,...,i2l+1
k of period Pi2l+2 ;

• f (m)(xi1,...,i2l+1) = f (m)(yi1,...,i2l+1) = 0 for m = 1, ..., r ;

• Ji1,...,i2l+1 ⊂ [xi1,...,i2l+1 , yi1,...,i2l+1 ] ⊂ [xi1,...,i2l−1 , yi1,...,i2l−1 ] 3 ;

• Ji1,...,i2l+1 is a quasi linear (Ni2l+1 , Si1,...,i2lTi2l+1 + 1) horseshoe for gk and Ji1,...,i2k+1 is a
linear horseshoe ;

• lim
i2l+1→+∞

‖gk/[xi1,...,i2l+1 ,yi1,...,i2l+1 ]‖r = 0.

3the last inclusion holds only for l 6= 0
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where the integers Si1,...,im for m ≤ 2k + 1 are defined inductively in the following way :
Si1 = Ti1 , Si1,...,i2l+1 = Si1,...,i2l ×Ti2l+1 + 1 and Si1,...,i2l+2 = Si1,...,i2l+1 ×Pi2l+2 . Remark that the
integer Si1,...,i2l+2 is the period of pi1,...,i2l+2 for gk.

These periodic points and horseshoes can also be arranged to satisfy the following properties so
that one can apply Lemma 2 (to simplify the notations we write Hi1,...,i2l+1 instead of HJi1,...,i2l+1

and H ′i1,...,i2l+1
instead of HJ′i1,...,i2l+1

) :

for all k ∈ N ∪ {∞} and for all integers 0 ≤ l ≤ k,

1. the sequence of periodic measures (γpi1,...,i2l+2
)i2l+2∈N converges to the measure of maximal

entropy of H ′i1,...,i2l+1
when i2l+2 → +∞ ;

2. measures supported by H ′i1,...,i2l+1
converge to γpi1,...,i2l when i2l+1 → +∞ (measures sup-

ported by H ′i1 converge to δ0 when i1 → +∞) ;

3. for all ε > 0 there exists an integer Ik such that :

∀i2l+1 > Ik ∃x ∈ [0, 1] s.t. H ′i1,...,i2l+1
⊂
⋂
n∈N

Bgk(x, n, ε) ;

4. lim
i1→+∞

... lim
i2l+1→+∞

h(H ′i1,...,i2l+1
, gk) =

log 5
rl+1

.

One deduces easily from the above assertions 1-4 that the map g∞ satisfies the assumptions
1-4 of Lemma 2. Then by applying this lemma for g∞, we get for all integers n: un(δ0) ≥(∑n

k=1
1
rk

)
log ‖g′∞‖∞ > 0. The converse inequalities un(δ0) ≤

(∑n
k=1

1
rk

)
log ‖g′∞‖∞ follow from

5 of Theorem 1. This concludes the proof of Theorem 2 with fr := g∞.

We explain now the construction of the sequence (gn)n∈N and the map g∞. We first consider
a Cr interval map g−1, such that g−1(0) = 0, g−1( 1

2 ) = 0, ‖g′−1‖∞ = 5, g−1 is affine with slope
λ = 5 on [0, 1

6 ] ( 1
2 ∈ g−1([0, 1

6 ]) = [0, 5
6 ]) and g(k)

−1 ( 1
2 ) = g

(k)
−1 ( 1

4 ) = 0 for k = 1, ..., r. We can assume
moreover that ‖(g−1)′

/[ 14 ,1]
‖∞ < 4. See Drawing 3.

One can apply Proposition 1 to the map g−1 with ε = 1, S = 1, λ = 5, p = 0, p′ = 1
6 , q′ = 1

4 ,
q = 1

2 and get a map g0 (with ‖g′0‖∞ ≤ 5) which admits a sequence of horseshoes (Hi1)i1∈N and
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sequences of periodic points (pi1,i2)i1,i2∈N satisfying all the above required conditions (1), (2), (3),
(4) for k = 0.

Assume that gk is already built and define gk+1.

The horseshoes Ji1,...,i2k+1 = (J1, ..., JNi2k+1
) are linear (Ni2k+1 , Si1,...,i2k+1) horseshoes for gk.

To get gk+1 from gk we only change gk on [xi1,...,i2k+1 , yi1,...,i2k+1 ] with i2k+1 large enough such

that the modulus of the r derivative of gk on [xi1,...,i2k+1 , yi1,...,i2k+1 ] is less than M2
1

2k+r
. Let us con-

sider one such horseshoe Ji1,...,i2k+1 and we denote it J = (J1, ..., JN ) (We also use the simplified
notations H := HJ , H ′ := HJ′ , [x, y] := [xi1,...,i2l+1 , yi1,...,i2l+1 ] and S := Si1,...,i2k+1).

First step : Recall H ′ is a linear (N,S) horseshoe for gk. By applying Lemma 3 there exists
a sequence of periodic points (pn)n∈N in J ′ with periods (SPn)n∈N for gk and a sequence of points
(p′n)n∈N in J ′ such that :

• the periodic measures γpn converge to the measure of maximal entropy of HJ′ ;

• the sequence (gk(pn))n∈N is monotone ;

• gSPnk is increasing and affine on [pn, p′n] ;

• JN ⊂ gSPnk ([pn, p′n]).

Let P denote the limit of (gk(pn))n∈N. On the last branch JN /∈ J ′ of the horseshoe J we create
a tangency of order r with the horizontal line {(x′, P ), x′ ∈ [0, 1]} at the point Q = g−1

k (P )
⋂
JN

by applying Lemma 4(1) to gk on [bN−1, Q] and on [Q, y]. We recall JN−1 < bN−1 < JN
and f (l)(bN−1) = 0 for l = 1, ..., r. We get a new map uk. The norm ‖‖r changed only on
[bN−1, y] in the following way : ‖(uk)[bN−1,y]‖r ≤M

−1
1 ‖(gk)[bN−1,y]‖r. Indeed |gk(bN−1)−gk(Q)| ≤

‖gk‖r|bN−1−Q|r and |gk(y)− gk(Q)| ≤ ‖gk‖r|y−Q|r. As N is even, the map gk is non-increasing
on JN (see Definition 2). Remark that uk is again non-increasing on JN and the family of intervals
(J1, ..., JN ) is a quasi linear (N,S) horseshoe for uk.

P

Q

Drawing 4 : first step 

Drawing 5graph of uk

x bN-1 y

Second step : Let us assume the sequence (gk(pn))n∈N is converging non-increasingly. Let
qn denote the point of JN such that uk(qn) = uk(pn) = gk(pn). Since uk is non-increasing on
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JN , the sequence qn is increasing. By extracting a subsequence one can assume that |qn − Q| <
2(|qn− qn+1|). Finally we put q0 = bN−1. We create tangencies of order r with the horizontal line
{(x′, gk(pn)), x′ ∈ [0, 1]} at the point qn by applying again Lemma 4(1) to [a, b] = [qn, qn+1] and
[d, c] = [uk(qn+1), uk(qn)] for all integers n. This can be done by preserving almost the norm ‖‖r
of uk. In fact

|uk(qn+1)− uk(qn)| ≤ ‖(uk)[x,y]‖r|qn −Q|r < 2r‖(uk)[x,y]‖r|qn − qn+1|r

We get a new map which is again Cr with horizontal tangencies of order r at each point qn. We
denote by vk this new map ; we have ‖(vk)/[x,y]‖r < 2rM−1

1 ‖(uk)/[x,y]‖r < 2rM−2
1 ‖(gk)/[x,y]‖r <

1/2k.

vk(qn) = gk(pn)

Q

Drawing 5 : second step 

qn

graph of vk

 bN-1  y

If the sequence (gk(pn))n∈N converges increasingly, we can create in the same way horizontal
tangencies of order r on [Q, y] accumulating on Q. In the following we assume always (gk(pn))n∈N
converges non-increasingly. The rest of the construction is completely similar in the increasing case.

Third step : According to Lemma 3 there exists p′n such that vSPnk is affine on [pn, p′n]
with slope λ equal to s(H)Pn and JN ⊂ vSPnk ([pn, p′n]). By applying Proposition 1 with ε = 1

2k
,

”S = SPn”, λ = s(H)Pn , p = pn, p′ = p′n, q′ = qn and q = qn+1, one can create small horseshoes
accumulating on pn for all integers n to get finally gk+1. We have created in this way a sequence
of new horseshoes for each J = Ji1,...,i2k+1 . Coming back to the initial notations this sequence of
new horseshoes and their associated intervals are denoted Ji1,...,i2k+3 and [xi1,...,i2k+3 , yi1,...,i2k+3 ].
We also denote by Ti2k+3 and Ni2k+3 the integers such that Ji1,...,i2k+3 is a Ni2k+3 horseshoe for

g
Ti2k+3Si1,...,i2k+2+1

k+1 . Finally pn and Pn are respectively denoted by pi1,...,i2k+2 and Pi2k+2 . It
follows easily from the construction that the new horseshoes Ji1,...,i2k+3 are (Ni2k+3 , Si1,...,i2k+3)
linear horseshoes for gk+1 and that the previous horseshoes Ji1,...,i2l+1 for l < k are modified only
on their last branch and therefore are again (Ni2l+1 , Si1,...,i2l+1) quasi linear horseshoes for gk+1.
By Proposition 1 the slope of the horseshoe Ji1,...,i2k+3 is related with the slope of the horseshoe
Ji1,...,i2k+1 in the following way :

s(Ji1,...,i2k+3) =
s(Ji1,...,i2k+1)Pi2k+2Ti2k+3

i22k+3(3i22k+3Ni2k+3)r−1
(9)

Notice that the modifications to get gk+1 from gk are made only on the intervals [x, y] =
[xi1,...,i2k+1 , yi1,...,i2k+1 ] where the moduli of the derivatives of order ≤ r of gk are less M2

1
2k+r

. There-
fore
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‖gk+1 − gk‖r ≤ sup
[x,y]

‖(gk+1 − gk) /[x,y]‖r

≤ sup
[x,y]

(
‖gk+1 /[x,y]‖r + ‖gk /[x,y]‖r

)
≤ sup

[x,y]

(
‖gk+1 /[x,y]‖r +

M2
1

2k+r

)
After the second step, we have ‖vk /[x,y]‖r < 1

2k
. Then by having applied Proposition 1 with

ε = 1
2k

, we get ‖gk+1 /[x,y]‖r ≤ 1
2k

+ ‖vk /[x,y]‖r < 1
2k−1 . We have finally (M1 ≤ 1):

‖gk+1 − gk‖r ≤
1

2k−2

Therefore the maps gk converge uniformly in Cr topology to a Cr map g∞. The claims (1),(2)
and (3) of p.11 follow easily from the construction. Let us check the item (4).

3.3.1 Computation of the entropy

One can remark that the Lyapounov exponent λi1,...,i2k+2 of the periodic point pi1,...,i2k+2 can be
written in terms of the slope of Ji1,...,i2k+1 in the following way :

λi1,...,i2k+2 =
log s(Ji1,...,i2k+1)

Si1,...,i2k+1

Now let us compute the topological entropy hi1,...,i2k+1 of the quasi linear (Ni2k+1 , Si1,...,i2k+1)
horseshoe Ji1,...,i2k+1 and the entropy h′i1,...,i2k+1

of the linear (Ni2k+1 − 1, Si1,...,i2k+1) horseshoe
J ′i1,...,i2k+1

:

hi1,...,i2k+1 =
logNi2k+1

Si1,...,i2k+1

h′i1,...,i2k+1
=

log(Ni2k+1 − 1)
Si1,...,i2k+1

Since Ni2k+1 grows exponentially, we have by taking the limit in i2k+1 :

lim
i2k+1→+∞

hi1,...,i2k+1 = lim
i2k+1→+∞

h′i1,...,i2k+1
(10)

We have the two following relations according to equation (8) and to equation (9) respectively :

• Each element of Ji1,...,i2k+1 spends enough time during the expanding and affine part to get
a horseshoe (Equation (8) p.10):

1
3i22k+1

≤ eλi1,...,i2k×Si1,...,i2kTi2k+1 × 1
2i22k+1(3i22k+1Ni2k+1)r

≤ eλi1,...,i2k 1
3i22k+1

Then we get after a simple computation :

Si1,...,i2k+1 − 2
Si1,...,i2k+1

×λi1,...,i2k
r

− log(6i2k+1)
Si1,...,i2k+1

≤ hi1,...,i2k+1 =
logNi2k+1

Si1,...,i2k+1

≤
Si1,...,i2k+1 − 1
Si1,...,i2k+1

×λi1,...,i2k
r

− log(6i2k+1)
Si1,...,i2k+1

(11)
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• The Lyapounov exponent of pi1,...,i2k decreases with k because we spend more and more time
(precisely Pi2k) in the affine part with slope 1

i22k−1(3i22k−1Ni2k−1)r−1 of the horseshoe Ji1,...,i2k−1

(Equation (9) p.13) :

eλi1,...,i2k×Si1,...,i2k = eλi1,...,i2k−2×((Si1,...,i2k−1−1)Pi2k) ×

(
1

i22k−1

(
3i22k−1Ni2k−1

)r−1

)Pi2k

and we get therefore :

λi1,...,i2k =
(Si1,...,i2k−1 − 1)Pi2k

Si1,...,i2k
λi1,...,i2k−2 − (r − 1)hi1,...,i2k−1 (12)

Since Ti2k+1 (and thus Si1,...i2k+1) increases linearly in i2k+1 and Pi2k goes to infinity when i2k
goes to infinity, we obtain by taking successively the limits in i2k+1, i2k, ..., i1 in (11) and (12):

lim
i1→+∞

... lim
i2k+1→+∞

hi1,...,i2k+1 =
1
r

lim
i1→+∞

... lim
i2k→+∞

λi1,...,i2k

lim
i1→+∞

... lim
i2k→+∞

λi1,...,i2k = lim
i1→+∞

... lim
i2k−2→+∞

λi1,...,i2k−2 − (r − 1) lim
i1→+∞

... lim
i2k−1→+∞

hi1,...,i2k−1

By putting αk := lim
i1→+∞

... lim
i2k+1→+∞

hi1,...,i2k+1 and βk =: lim
i1→+∞

... lim
i2k→+∞

λi1,...,i2k , we have

according to the previous equations :{
αk = βk

r
βk = βk−1 − (r − 1)αk−1

We get βk = βk−1 − (r − 1)αk−1 = βk−1 − r−1
r βk−1 = βk−1

r . Moreover β0 is the Lyapounov
exponent of the fixed point 0, which is equal to log 5. Therefore we conclude that βk = log 5

rk
and

αk = log 5
rk+1 , i.e.

lim
i1→+∞

... lim
i2k+1→+∞

hi1,...,i2k+1 =
log 5
rk+1

This concludes the proof of Theorem 2.

3.4 Proof of Theorem 3

We explain the modification of the previous example (Theorem 2) to get for every ε > 0 an example

of Cr interval map fr,ε with ‖f ′r,ε‖∞ ≥ 2 and hsex(fr,ε) ≥
r log ‖f ′r,ε‖∞

r−1 − ε.
Let f be a Cr map with the following properties :

• f is increasing on [0, 1−ε
2 ] ∪ [1− ε, 1] and decreasing on [ 1−ε2 , 1− ε] ;

• f(0) = f(1− ε) = 0, f( 1−ε
2 ) = 1 and f(1) = 2ε ;

• f is affine on [0, 1
2 − ε] (resp. on [ 12 + ε, 1− 3ε

2 ]) with slope 2
1−ε (resp. − 2

1−ε ).

Clearly this map can be Cr extended such that 2 ≤ ‖f ′‖∞ ≤ 2
1−ε .
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1

2 ε

P

1 - ε
2

1 - ε 1Q0

graph of f

Drawing 6

The topological entropy of f is greater than log 2, because ([ ε2 ,
1
2 − ε], [

1
2 + ε, 1− 3ε

2 ]) is a linear
(2, 1) horseshoe for f . Let µ be a measure of maximal entropy of this horseshoe, there exists
a sequence of periodic points (pn)n∈N such that the associated periodic measures are converging
to µ and the sequence (f(pn))n∈N is converging to a point P ∈ [ ε2 , 2ε]. Then one can apply
the same process as in the last example to create quasi linear horseshoes accumulating on qn =
(f/[1−ε,1])−1(pn) with limn→+∞ qn = Q ∈ f([ ε2 ,

1
2 − ε]), such that the new map fr,ε satisfies

uω(γpn) = log ‖f ′r,ε‖∞
r−1 without changing the supremum norm of the first derivative, that is ‖f ′r,ε‖∞ =

‖f ′‖∞. Then we get :

hsex(µ) ≥ h(µ) + lim sup
n→+∞

uω(γpn)

≥ log 2 +
log ‖f ′r,ε‖∞
r − 1

≥
r log ‖f ′r,ε‖∞

r − 1
+ log(1− ε)

3.5 About the convergence of the sequence (un)n∈N

By considering the example of Theorem 2, the examples of S.Newhouse and T.Downarowicz [10]
and Conjecture 1, one can wonder if for a Cr (r > 1) map T defined on a smooth compact manifold
M of dimension d we have for all n ∈ N :

sup
µ∈M(M,T )

(un+1 − un)(µ) ≤ dR(T )
rn+1

(13)

If such inequalities hold for some dynamical system (X,T ), it implies that the sequence (un)n∈N
is uniformly converging. Then one can easily prove that uω+1 = uω, i.e. the order of accumulation
of (X,T ) is at most ω (recall the order of accumulation of (X,T ) is the first ordinal α satisfying
uβ = uα for all β > α). In the following we prove the inequalities (13) are false in general :

Theorem 4 Let r ≥ 2 be an integer. There exists a Cr interval map fr : [0, 1]→ [0, 1] such that

sup
µ∈M([0,1],fr)

(u2 − u1)(µ) >
log ‖f ′r‖∞

r2
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Proof : We modify the construction of the example of Theorem 2. Let us explain the main idea
: in the previous construction of g0 one can create horseshoes with entropy < log ‖g′0‖∞

r but with
a slope bigger than in the estimates obtained for the example of Theorem 2. In the next step
(construction of g1), one can use this amount of expansion to get horseshoes with bigger entropy
such that (u2 − u1)(δ0) > log ‖g′1‖∞

r2 . We give now more details.

Let λ > r log 3. We choose g−1 to be a map with three branches of monotonicity (in particular
the topological entropy of g0 is less than log 3) such that g−1 is affine with slope eλ > 1 on [0, 5

6eλ
]

and ‖g′−1‖∞ = eλ. Fix some real a0 such that log 3 < a0 <
λ
r . Then following the construction

of g0, one can build the horseshoes (Ji1)i1∈N such that htop(HJi1
) ≤ a0 for all integers i1 and

lim
i1→+∞

htop(HJi1
) ≤ a0. It follows easily that the tail entropy of g0 is bigger or equal to a0.

Let us prove now that the tail entropy of g0 is equal to a0. According to the variational
principle for the tail entropy (Equation (2)) for the Katok entropy structure HKat1

2
= (hk)k∈N, we

have
h∗(g0) = lim

k→+∞
sup

ν∈M(X,T )

(h− hk)(ν) = lim
k→+∞

sup
ν∈Me(X,T )

(h− hk)(ν)

The last equality follows from the harmonicity of HKat1
2

. Therefore for all ε > 0 there exists an
integer k and an ergodic measure µε such that (h− hk)(µε) > h∗(g0)− ε.

We show now that if x is a typical point for µε with ε small enough then x must visit an interval
of the form [xn, yn], that is µε([xn, yn]) > 0 for some integer n. Let M := [0, 1]−

⋃
n∈N[xn, yn]. The

map (g0)/M can be extended on [0, 1] such that the extension has three branch of monotonicity.
Then µε(M) = 1 implies h(µε) ≤ log 3 and therefore (h− hk)(µε) ≤ log 3 : we get a contradiction
for ε small enough.

Remark also that the topological entropy restricted to [xn, yn] is equal to htop(HJn). We con-
clude that h(µ) ≤ sup

n∈N
htop(HJn) = a0 and therefore h∗(g0) = a0.

Now we follow the construction of g1. According to equation (12) the Lyapounov exponents
(λi1,i2)i2∈N of the periodic points (pi1,i2)i2∈N, whose associated measures converge to the measure
of maximal entropy of HJ′i1

, satisfies λi1,i2 = (Ti1−1)Pi2
Ti1Pi2

λ−(r−1)hi1 with hi1 → a0 when i1 goes to

infinity. Therefore for large i1 and i2 we obtain the following estimate : λi1,i2 ' λ− (r−1)a0 >
λ
r .

Then, following the construction of g1, one can build the horseshoes HJi1,i2,i3
such that their

topological entropy is almost equal to λi1,i2
r > λ

r2 . Arguing as above it is easily seen that the tail
entropy of g1 is equal to max(a0,

λ−(r−1)a0
r ). Put a1 := λ−(r−1)a0

r > λ
r2 .

In the following we choose a0 = λ
2r−1 <

λ
r . Then a1 = a0. According to Lemma 2 we have

u2(δ0) ≥ a0 + a1 = 2
λ

2r − 1
and

u1(δ0) ≥ a0 =
λ

2r − 1
Moreover according to the variational principle for the tail entropy and the inequality u2 ≤ 2u1,

we get :

sup
µ∈M([0,1],g1)

u1(µ) = h∗(g1) =
λ

2r − 1

sup
µ∈M([0,1],g1)

u2(µ) ≤ 2h∗(g1) =
2λ

2r − 1
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Therefore we have finally u2(δ0) = 2λ
2r−1 and u1(δ0) = λ

2r−1 . Thus since r ≥ 2,

(u2 − u1)(δ0) =
log ‖g′1‖∞

2r − 1
>
‖g′1‖∞
r2

�

Our argument can be easily adapted to get, for every integer n ≥ 1, a Cr (r > 1) interval maps
fr with

sup
µ∈M([0,1],fr)

(un+1 − un)(µ) ≥ log ‖f ′r‖∞
rn+1

Indeed one can modify the map gn of the example of Theorem 2 in the same way as above such
that we have with the notations introduced page 15 :

• αk does not depend on k = 0, ..., n ;

• αn = βn
r ;

Moreover we can again ensure that :

• β0 = log ‖g′n‖∞ ;

• h∗(gn) = α0 ;

• βk = βk−1 − (r − 1)αk for all k = 0, ..., n.

These properties imply easily that α0 = log ‖g′n‖∞
r+n(r−1) . Moreover, by arguing as in the proof of

Theorem 4 we get for all k = 0, ..., n+ 1 :

sup
µ∈M([0,1],gn)

uk(µ) = uk(δ0) =
k log ‖g′n‖∞
r + n(r − 1)

Then one can deduce an exemple of Cr interval map such that the sequence (un)n∈N does not
converge uniformly. Indeed one can modify the example of Theorem 3 in the following way. With
the notations of the proof of Theorem 3 one can follow the above construction to ensure that
uk(γpn) = k log ‖g′‖∞

r+(n(r−1)) for all n ∈ N and for all k = 0, ..., n+ 1. We get then for all k ∈ N :

sup
µ∈M([0,1],g)

(
sup
l∈N

ul − uk
)

(µ) =
log ‖g′‖∞
r − 1

In [5] the authors prove that any countable ordinal can be realized as the order of accumulation
of a zero-dimensional dynamical system. The proof uses strongly the non-uniform convergence of
subsequences (uαn)n∈N of the transfinite sequence. Following the strategy of [5] we hope to prove
the following conjecture :

Conjecture 2 Let r ∈ N and let α be a countable ordinal. There exists a Cr interval map with
order of accumulation equal to α.

3.6 Higher dimensional examples

M.Boyle and T.Downarowicz proved the following formula for the symbolic extension entropy of
a direct product :

Theorem 5 (Theorem 3.2 of [2]) Let T : X → X and S : Y → Y be two dynamical systems with
finite topological entropy, then :

hsex(T × S) = hsex(T ) + hsex(S) (14)

Moreover for all ordinal α and for all (µ, ν) ∈M(X,T )×M(Y, S),

uα(µ× ν) ≥ uα(µ) + uα(ν) (15)
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By considering product of the previous examples of interval maps, we get (non-invertible)
examples of any dimension with large symbolic extension entropy :

Corollary 1 Let r, d ∈ N∗. There exists a Cr map Tr : [0, 1]d → [0, 1]d fixing (0, ..., 0), such that
for all integers n ≥ 1 :

un(δ(0,...,0)) =

(
n∑
k=1

1
rk

)
log ‖DTr‖∞ > 0

In particular :

• if r > 1, then uω(δ(0,...,0)) = log ‖DTr‖∞
r−1 ;

• if r = 1, then uω ≡ +∞ and therefore T1 does not admit symbolic extensions.

Proof : Such an example has been already built for d = 1 (Theorem 2). Let g be such an interval
map. We denote gd := g × ...× g︸ ︷︷ ︸

d×

. By the inequality (15) we have for all integers n ≥ 1 :

ugdn (δ(0,...,0)) ≥ dugn(δ0)

Also ‖Dgd‖∞ = ‖Dg‖∞. This concludes the proof.
�

Similarly by combining Theorem 5 and Theorem 3 we obtain :

Corollary 2 Let r ≥ 2, d ≥ 1 be integers. For all ε > 0 there exists a Cr map Tr,ε : [0, 1]d → [0, 1]d

with ‖DTr,ε‖∞ ≥ 2 such that :

hsex(Tr,ε) ≥
dr log ‖DTr,ε‖∞

r − 1
− ε

Appendix
We recall the definition of Katok’s entropy. Let 0 < λ < 1. Let ε > 0 and µ be an ergodic

measure.

hKatλ (µ, ε) := lim sup
n

log min
{
]C | µ(

⋃
x∈C B(x, ε, n)) > λ

}
n

We extend this definition by harmonicity on the convex set of invariant measures. Katok
proved in [12] that for any 0 < λ < 1 and any invariant measure µ,

lim
ε→0

hKatλ (µ, ε) = h(µ)
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