The CRT is the scaling limit of unordered binary trees - Archive ouverte HAL
Article Dans Une Revue Random Structures and Algorithms Année : 2011

The CRT is the scaling limit of unordered binary trees

Résumé

We prove that a uniform, rooted unordered binary tree with $n$ vertices has the Brownian continuum random tree as its scaling limit for the Gromov-Hausdorff topology. The limit is thus, up to a constant factor, the same as that of uniform plane trees or labeled trees. Our analysis rests on a combinatorial and probabilistic study of appropriate trimming procedures of trees.
Fichier principal
Vignette du fichier
binary-tree.pdf (395.78 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00364487 , version 1 (26-02-2009)

Identifiants

Citer

Jean-François Marckert, Grégory Miermont. The CRT is the scaling limit of unordered binary trees. Random Structures and Algorithms, 2011, 38 (4), pp.467--501. ⟨hal-00364487⟩

Collections

ENS-PARIS CNRS PSL
174 Consultations
202 Téléchargements

Altmetric

Partager

More