Factorial threefolds with Ga-actions - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2009

Factorial threefolds with Ga-actions

David R. Finston
  • Fonction : Auteur
  • PersonId : 858301
Parag Deepak Mehta
  • Fonction : Auteur
  • PersonId : 858302

Résumé

The affine cancellation problem, which asks whether complex affine varieties with isomorphic cylinders are themselves isomorphic, has a positive solution for two dimensional varieties whose coordinate rings are unique factorization domains, in particular for the affine plane, but counterexamples are found within normal surfaces Danielewski surfaces and factorial threefolds of logarithmic Kodaira dimension equal to 1. The latter are therefore remote from the affine three-space, the first unknown case where the base of one cylinder is an affine space. Locally trivial Ga-actions play a significant role in these examples. Threefolds admitting free Ga-actions are discussed, especially a class of varieties with negative logarithmic Kodaira dimension which are total spaces of nonisomorphic Ga-bundles. Some members of the class are shown to be isomorphic as abstract varieties, but it is unknown whether any members of the class constitute counterexamples to cancellation.
Fichier principal
Vignette du fichier
FactThreefolds.pdf (188.09 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00363371 , version 1 (23-02-2009)

Identifiants

Citer

Adrien Dubouloz, David R. Finston, Parag Deepak Mehta. Factorial threefolds with Ga-actions. 2009. ⟨hal-00363371⟩
75 Consultations
67 Téléchargements

Altmetric

Partager

More