Constraint-based Subspace Clustering - Archive ouverte HAL
Communication Dans Un Congrès Année : 2009

Constraint-based Subspace Clustering

Elisa Fromont
Connectez-vous pour contacter l'auteur
Adriana Prado
  • Fonction : Auteur
  • PersonId : 858233
Céline Robardet

Résumé

In high dimensional data, the general performance of traditional clustering algorithms decreases. This is partly because the similarity criterion used by these algorithms becomes inadequate in high dimensional space. Another reason is that some dimensions are likely to be irrelevant or contain noisy data, thus hiding a possible clustering. To overcome these problems, subspace clustering techniques, which can automatically find clusters in relevant subsets of dimensions, have been developed. However, due to the huge number of subspaces to consider, these techniques often lack efficiency. In this paper we propose to extend the framework of bottom up subspace clustering algorithms by integrating background knowledge and, in particular, instance-level constraints to speed up the enumeration of subspaces. We show how this new framework can be applied to both density and distance based bottom-up subspace clustering techniques. Our experiments on real datasets show that instance-level constraints cannot only increase the efficiency of the clustering process but also the accuracy of the resultant clustering.
Fichier principal
Vignette du fichier
siam2008.pdf (260.2 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00362829 , version 1 (31-03-2009)

Identifiants

  • HAL Id : hal-00362829 , version 1

Citer

Elisa Fromont, Adriana Prado, Céline Robardet. Constraint-based Subspace Clustering. SIAM International Conference on Data Mining, Apr 2009, Sparks, Nevada, United States. pp.26-37. ⟨hal-00362829⟩
180 Consultations
258 Téléchargements

Partager

More