Bayesian analysis of growth curves using mixed models defined by stochastic differential equations - Archive ouverte HAL
Article Dans Une Revue Biometrics Année : 2010

Bayesian analysis of growth curves using mixed models defined by stochastic differential equations

Résumé

Growth curve data consist of repeated measurements of a continuous growth process over time among a population of individuals. These data are classically analyzed by nonlinear mixed models. However, the standard growth functions used in this context prescribe monotone increasing growth and can fail to model unexpected changes in growth rates. We propose to model these variations using stochastic differential equations (SDEs) that are deduced from the standard deterministic growth function by adding random variations to the growth dynamics. A Bayesian inference of the parameters of these SDE mixed models is developed. In the case when the SDE has an explicit solution, we describe an easily implemented Gibbs algorithm. When the conditional distribution of the diusion process has no explicit form, we propose to approximate it using the Euler-Maruyama scheme. Finally, we suggest to validate the SDE approach via criteria based on the predictive posterior distribution. We illustrate the efficiency of our method using the Gompertz function to model data on chichen growth, the modeling being improved by the SDE approach.
Fichier principal
Vignette du fichier
donnet_foulley_samson.pdf (977.06 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00360111 , version 1 (10-02-2009)

Identifiants

Citer

Sophie Donnet, Jean-Louis Foulley, Adeline Samson. Bayesian analysis of growth curves using mixed models defined by stochastic differential equations. Biometrics, 2010, 66 (3), pp.733-741. ⟨10.1111/j.1541-0420.2009.01342.x⟩. ⟨hal-00360111⟩
365 Consultations
723 Téléchargements

Altmetric

Partager

More