
HAL Id: hal-00360111
https://hal.science/hal-00360111

Submitted on 10 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bayesian analysis of growth curves using mixed models
defined by stochastic differential equations

Sophie Donnet, Jean-Louis Foulley, Adeline Samson

To cite this version:
Sophie Donnet, Jean-Louis Foulley, Adeline Samson. Bayesian analysis of growth curves using
mixed models defined by stochastic differential equations. Biometrics, 2010, 66 (3), pp.733-741.
�10.1111/j.1541-0420.2009.01342.x�. �hal-00360111�

https://hal.science/hal-00360111
https://hal.archives-ouvertes.fr


Mixed models defined by stochastic differential equations 1

Bayesian analysis of growth curves using mixed models defined by stochastic

differential equations

Sophie Donnet1

Ceremade, Universite Dauphine, France

*email: sophie.donnet@ceremade.dauphine.fr

and

Jean-Louis Foulley2

INRA, UMR GABI, CR Jouy, France

*email: jean-louis.foulley@jouy.inra.fr

and

Adeline Samson3

Laboratoire MAP5, Universite Paris Descartes, France

*email: adeline.samson@parisdescartes.fr

Summary: Growth curve data consist of repeated measurements of a continuous growth process

over time among a population of individuals. These data are classically analyzed by nonlinear

mixed models. However, the standard growth functions used in this context prescribe monotone

increasing growth and can fail to model unexpected changes in growth rates. We propose to model

these variations using stochastic differential equations (SDEs) that are deduced from the standard

deterministic growth function by adding random variations to the growth dynamics. A Bayesian

inference of the parameters of these SDE mixed models is developed. In the case when the SDE

has an explicit solution, we describe an easily implemented Gibbs algorithm. When the conditional

distribution of the diffusion process has no explicit form, we propose to approximate it using the

Euler-Maruyama scheme. Finally, we suggest to validate the SDE approach via criteria based on

the predictive posterior distribution. We illustrate the efficiency of our method using the Gompertz

function to model data on chichen growth, the modeling being improved by the SDE approach.
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1. Introduction

Growth curve data consist of repeated measurements of a continuous growth process over

time among a population of individuals. In agronomy, growth data allow differentiating

animal or vegetal phenotypes by characterizing the dynamics of the underlying biologi-

cal process. In gynecology or pediatrics, height and weight of fetus/children are regularly

recorded to control their development. The parametric statistical approach commonly used

to analyze these longitudinal data is mixed model methodology (Huggins and Loesch, 1998).

The regression function of this mixed model is classically a parametric growth function, such

as the Gompertz, logistic, Richards or Weibull functions (Zimmerman and Núnez-Antón,

2001) which prescribe monotone increasing growth, whatever the parameter values. These

models have proved their efficiency in animal genetics (Hou et al., 2005; Jaffrézic et al., 2006,

e.g.) and in pediactrics (Hlaing et al., 2001; Spyrides et al., 2008, e.g.). However, as pointed

out by Davidian and Giltinan (2003), the used function may not capture the exact process, as

responses for some individuals may display some local fluctuations such as weight decreases

or growth slow down. These phenomena are not due to error measurements but are induced

by an underlying biological process that is still unknown today. In animal genetics, a wrong

modeling of these curves could affect the genetic analysis. In fetal growth, the detection of

growth slow down is a crucial indicator of fetal development problems.

The aim of this paper is to model these variations in growth rate using a stochastic

differential equation (SDE) whose solution is the regression term of the mixed model. More

precisely, each growth function is defined as the solution of an ordinary differential equation

(ODE); this ODE models the growth rate. We suggest to add a random perturbation to the

ODE, resulting in an SDE. Thus, the growth rate varies randomly around the mean dynamics.

In this paper, we propose and study Bayesian estimators for mixed models defined by SDEs.

Estimator properties are illustrated for simulated and real animal growth data.
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Parametric estimation by maximum likelihood of SDE with random parameters (without

measurement noise) has been studied by Ditlevsen and De Gaetano (2005). However, esti-

mation of SDE mixed models (including the measurement noise modeling) has received little

attention. Overgaard et al. (2005) and Tornoe et al. (2004) proposed estimators based on an

extended Kalman filter, but the algorithm convergence was not proved. Donnet and Samson

(2008) proposed an EM-based estimator (Dempster et al., 1977) and prove the convergence

of their algorithm. Whereas the Bayesian point of view is widely used on standard growth

curves, Bayesian estimation of SDE mixed models has not been much investigated. Cano

et al. (2006) computed the posterior distribution by approximating the diffusion process by

an Euler scheme. Oravecz et al. (in press) studied the Bayesian estimation of an Ornstein-

Uhlenbeck process with random parameters. In this paper, we propose either to use a

judicious transformation of the SDE to compute the exact conditional distribution of the

diffusion process, or, if it is not possible, to approximate the diffusion by the Euler-Maruyama

scheme. Then we propose a Gibbs algorithm to simulate the exact or the approximate

posterior distributions. In the case of approximation by the Euler scheme, we control the error

induced by this scheme on the posterior distributions. Finally, we adapt the computation of

the posterior predictive distributions to validate the SDE mixed model (Meng, 1994).

Section 2 presents the classical nonlinear mixed model and the mixed model defined by

SDEs. We discuss the choice of the volatility term in the SDEs. In Section 3, we suggest

some prior specifications and posterior computation. We also present the Euler-Maruyama

scheme. Section 4 shows how to validate the SDE mixed model using posterior predictive

distributions. In Section 5, the theory is illustrated with the particular case of the Gompertz

function applied on chichen growth data.
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2. Models and notations

2.1 Nonlinear mixed models

Let y = (yi)16i6n = (yij)16i6n,16j6ni
denote the data, where yij is the noisy measurement of

the observed biological process for individual i at time tij, for i = 1, . . . , n, j = 0, . . . , ni. In

classical mixed models, the evolution of the process is modeled by a deterministic function,

depending on individual random parameters. Formally, the classical nonlinear mixed model

is defined as:

yij = f(φi, tij) + εij, εij ∼i.i.d. N (0, σ2) (1)

φi ∼ N (µ, Ω)

with f being a parametric deterministic function and φ = (φi)16i6n the p-vectors of indi-

vidual parameter vectors. The φi are assumed to be independently and identically normally

distributed with expectation µ and variance Ω. The εij are the residual errors, assumed to

be independently and identically normally distributed with null mean and variance equal to

σ2.

For growth curve data, f is classically one of the four most famous parametric functions

modeling growth curves, namely the logistic, the Gompertz, the Richards and the Weibull

functions. Each of them can be written as the solution of an ordinary differential equation

(ODE) describing the evolution of growth rate, which are respectively:

f ′(t) = Cf(t)
[

1 − 1

A
f(t)

]

, f(0) = A
1+B

(Logistic) (2)

f ′(t) = BCe−Ctf(t), f(0) = Ae−B (Gompertz) (3)

f ′(t) =
BCDe−Ct

1 + Be−Ct
f(t), f(0) = A

(1+B)D (Richards) (4)

f ′(t) = DCtD−1(A − f(t)), f(0) = A − B (Weibull) (5)

where A, B, C, D are non-negative parameters. A is the upper asymptote, C and D are

growth rate parameters. All four models prescribe monotone increasing curves. More gen-
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erally, if φ denotes the parameter vector (either (A, B, C), (A, B, C, D) or a well-chosen

parametrization), f is the solution of the following ODE:

∂f(φ, t)

∂t
= F (f, t, φ), f(φ, 0) = f0(φ) (6)

2.2 Nonlinear mixed models defined by stochastic differential equations

In this section, we extend the classical nonlinear mixed model by replacing the regression

function by a stochastic process. In order to take into account individuals whose growth

curve suffers from an unexpected growth rate change, we propose to introduce a stochastic

term in the ODE (6). Growth curve is thus described by a random process, denoted (Zt),

which is the solution of the following SDE:

dZt = F (Zt, t, φ)dt + Γ(Zt, φ, γ2)dWt, Z(t = 0) = Z0(φ) (7)

where Wt is a Brownian motion. Γ(Zt, φ, γ2) is the volatility function depending on the

unknown parameter γ2.

The nonlinear mixed model defined by an SDE is thus:

yij = Ztij(φi) + εij, εij ∼i.i.d. N (0, σ2)

dZt(φi) = F (Zt, t, φi)dt + Γ(Zt, φ, γ2)dWt (8)

φi ∼ N (µ, Ω)

In model (8), three fundamentally different noises are distinguished: the inter-subject vari-

ability Ω, which is the individual parameter variance, the dynamic noise γ2, reflecting

the random fluctuations around the corresponding theoretical dynamic model, and the

measurement noise σ2 representing the uncorrelated part of the residual variability associated

with assay or sampling errors.

Many types of volatility functions can be proposed to extend an ODE into an SDE (e.g.

constant, square root or polynomial volatility). For a given equation, the choice depends on

several considerations. If the observed biological process is non-negative, a volatility function
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that ensures the positivity of (Zt) will be chosen. If biological reasons imply that a model

parameter fluctuates along the experiment record, then the volatility can be derived by

adding a random perturbation to this parameter. If heteroscedastic variances have been used

in an ODE modeling approach, a polynomial volatility can be chosen. Finally, algorithmic

and computational constraints have to be considered: an SDE with explicit solution implies

a simpler estimation scheme leading to good estimation properties (convergence of the

algorithm to the true posterior distribution) whereas an SDE without explicit solution implies

additional computational difficulties (use of an approximation scheme). As an example, we

propose to use an affine volatility function Γ(Zt, φ, γ2) = γZt, for the logistic (2), Gompertz

(3) and Richards (4) models: the process (log Zt) is then a Gaussian process (see Section 5.2

for more details).

3. Bayesian estimation

3.1 Prior specification

The Bayesian approach consists in the evaluation of the posterior distribution of the pop-

ulation parameters µ, Ω, σ2 and the volatility γ2 for the SDE model. The first step is thus

the choice of the prior distribution. Usual diffuse prior distributions can be chosen but the

resulting posterior distributions may not be proper. Therefore, we suggest to use standard

prior distributions proposed, among others, by De la Cruz-Mesia and Marshall (2006) for

expectation or variance parameters in hierarchical models:

µk ∼ N (mprior
k , vprior

k ), k = 1, . . . , p

Ω−1 ∼ W (R, p + 1) (9)

1/σ2 ∼ Γ(αprior
σ , βprior

σ )
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The γ2 parameter controls the variance of the random perturbation. Therefore it seems

reasonnable to choose as prior for γ2 an inverse-Gamma distribution:

1/γ2 ∼ Γ(αprior
γ , βprior

γ )

In pratice the specification of hyperparameters mprior
k , vprior

k , R, αprior
σ , βprior

σ , αprior
γ , βprior

γ may

be difficult. Therefore we can choose the values of hyperparameters to obtain non-informative

priors.

3.2 Posterior computation

Since models (1) and (8) are non-linear, posterior distributions are not explicit and iterative

estimation procedures have to be used. For the ODE model (1), Gibbs sampling algorithms

including the sampling of the auxiliary random variables φi under their conditional distribu-

tions have been proposed in the literature (Carlin and Louis, 2000, e.g.). These algorithms do

not present any particular difficulties and are not detailed here. For the SDE model (8), we

propose to use a Gibbs algorithm, including the sampling of the auxiliary random variables

φi and the vectors Zi of realizations of process (Zt) for each individual at each observation

time. Let Z = (Z1, . . . , Zn) ∈ R(n1+1)+...(nn+1) denote the vector of the n realizations. Hence

the Gibbs sampling algorithm for the SDE model is outlined as follows:

• Step 1: initialize the iteration counter of the chain k = 1 and start with initial values

σ−2(0), γ2(0), µ(0), φ(0), Z(0).

• Step 2: obtain σ−2(k), γ2(k), µ(k), φ(k), Z(k) from σ−2(k−1), γ2(k−1), µ(k−1), φ(k−1), Z(k−1)

through successive generations of

(1) Z(k) ∼ p(Z|φ(k−1), γ−2(k−1), σ−2(k−1), y)

(2) φ(k) ∼ p(φ|σ−2(k−1), γ−2(k−1), µ(k−1), Ω(k−1), Z(k), y0) where y0 = (yi0)i=1...n

(3) µ(k) ∼ p(µ|φ(k)) and Ω(k) ∼ p(Ω|φ(k))

(4) σ−2(k) ∼ p(σ−2|Z(k), φ(k), y) and γ−2(k) ∼ p(γ−2|Z(k), φ(k))
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• Step 3: change k to k + 1 and return to Step 2 until convergence is reached.

Some conditional distributions are explicit. A Gamma prior distribution on σ−2 implies that

p(σ−2|Z(k), φ(k), y) is a Gamma density. The prior distribution of p(φ|µ, Ω) being Gaussian,

then the conditional distribution of µ is Gaussian and the conditional distribution of Ω is

inverse Wishart. The conditional distributions on φ, Z and γ2 depend on the specific form

of the SDE and will be detailed in the particular example of the Gompertz model in Section

5. Depending on the complexity of the model, we may have to resort to Metropolis-Hastings

algorithms. Moreover, for SDEs without explicit solution, the conditional distribution on Z

has generally not a closed form. In this case, we suggest to approximate the diffusion by the

Euler-Maruyama scheme, which leads to Gaussian approximations of the transition densities.

We then introduce an approximate statistical model on which the posterior distributions are

computed. Details are given thereafter.

3.3 Posterior distribution using Euler-Maruyama approximation

Let us briefly recall the Euler-Maruyama scheme for subject i. If the time intervals between

the observation instants are too great to obtain a good approximation of the transition

density, a natural approach is to introduce a set of auxiliary latent data points between

every pair of observations, as first proposed by Pedersen (1995). Let ti0 = τ0 < τ1 < . . . <

τm < . . . < τMi
= ti,ni

denote the equally spaced discretization of the time interval [ti0, ti,ni
].

Let h be the step size of the discretization. Let us assume that, for all j = 0 . . . ni, there

exists an integer mj verifying tij = τmj
, with m0 = 0 by definition. Then the diffusion process

denoted Z̃h and supplied by the Euler-Maruyama approximation of the SDE is described by

the following iterative scheme: for a fixed φi, Z̃h
0 = Z0(φi), and for m = 1 . . . Mi,

Z̃h
m = Z̃h

m−1 + h F (Z̃h
m−1, τm−1, φi) + Γ(Z̃h

m−1, φi, γ
2)
√

h ξm , ξm ∼i.i.d N (0, 1)
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Consequently, (Z̃h
m0

, . . . , Z̃h
mni

) is an approximation of the original diffusion process at time

points (ti0, . . . , tini
).

Using this approximation of the diffusion process provided by the Euler-Maruyama scheme

of step size h, an approximate statistical model is defined as:

yij = Z̃h
mj

(φi) + εij, εij ∼i.i.d. N (0, σ2) (10)

Z̃h
m(φi) = Z̃h

m−1(φi) + h F (Z̃h
m−1, τm−1, φi) + Γ(Z̃h

m−1, φi, γ
2)
√

h ξm , 1 6 m 6 Mi, (11)

ξm ∼ i.i.dN (0, 1)

φi ∼ N (µ, Ω)

For model (10), the conditional distribution of the approximate diffusion Z̃h is Gaussian,

allowing to implement the previously presented Gibbs algorithm. The convergence of this

Gibbs algorithm is ensured by classical results (Carlin and Louis, 2000). However, this

Gibbs algorithm is performed on the approximate model (10), and computes the posterior

distribution ph(θ|y) of model (10), with θ = (µ, Ω, σ2, γ2), instead of the original posterior

distribution p(θ|y). But, the error induced by the Euler scheme on the posterior distributions

can be controlled, as shown in the Appendix.

4. Model validation

The goal in model checking is to monitor the quality of the proposed model, i.e. to determine

whether the observed data are representative of the type of data we might expect under this

model. Posterior predictive checks set this up by generating replicated data sets from the

estimated posterior distribution of the model. These replicated data sets are then compared

with the observed data. The function used to compare observed and replicated datasets is

the discrepancy function; it depends on data and model parameters and is denoted T (y, η),

η being used as generic notation for a function of the model parameters. It quantifies

incompatibility of the model with the observed data. In our case, we consider for T the
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χ2 discrepancy:

T (y, η) =
(y − η)2

V ar(y − η)

For the observation at time tij, we choose η = f(φ, tij) for the ODE model and η = Zij(φi)

for the SDE model. Consequently, for both models, V ar(y − η) = σ2.

We aim at comparing the posterior distribution p(T (y, η)|y) of the observed data y with

the posterior distribution p(T (yrep, η)|y) where yrep denotes the replicated data drawn from

the posterior predictive distribution p(yrep|y). A short version of that posterior predictive

distribution is the posterior predictive p-value:

ppp = P
[

T (yrep, η) > T (y, η)|y
]

(12)

=
∫

P
[

T (yrep, η) > T (y, η)|y, η
]

p(η|y)dη

Since this quantity has no closed form, the idea is to approximate it by the Monte Carlo

method. For each estimated model (ODE and SDE), the Gibbs algorithm used to estimate

the posterior distribution provides a set of vectors ηl (l = 1 . . . L) drawn from the posterior

distribution p(η|y). For each of this draw, a replicated data set yl
rep is simulated from the

posterior predictive distribution of the data p(yrep|ηl). Finally, the posterior predictive p-

value (12) is estimated by the Monte Carlo method as 1
L

∑L
l=1 1T (yl

rep,ηl)>T (y,ηl). By definition

of T and η and for both models (ODE and SDE), we can remark that T (yl
rep, η

l) is simulated

under a χ2(1) distribution.

5. An example: chicken growth modeling with the Gompertz function

We focus on the modeling of chicken growth previously analyzed by Jaffrézic et al. (2006).

Data y are noisy weight measurements of n = 50 chickens at days t =0, 4, 6, 8, 12, 16, 20,

24, 28, 32, 36, 40 after birth: see the corresponding curves on Figure 1.
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5.1 The classical Gompertz nonlinear mixed model

Jaffrézic et al. (2006) propose to model these growth data by a Gompertz function (3) and

a mixed model. Jaffrézic and Foulley (2006) underline that a heteroscedastic error model

is required to obtain satisfactory results. For simplicity’s sake, we consider modeling the

logarithm of the data y by adding an additive measurement error with a constant variance:














log yij = log Ai − Bie
−Citij + εij, εij ∼i.i.d. N (0, σ2), ∀i = 1, . . . , n, j = 0, . . . , ni

φi = (log Ai, Bi, log Ci) ∼i.i.d. N (µ, Ω), ∀i = 1, . . . , n

(13)

We use the log-parametrization for parameters Ai and Ci. This parametrization has two

advantages: it simplifies the computation of the posterior distributions and it ensures the

positivity of the parameters. We set µ = (log(a), b, log(c)).

5.2 Extension to the Gompertz stochastic nonlinear mixed model

We now deduce the SDE model from the Gompertz equation (3). Given the heteroscedasticity

of the process, the volatility function is set to be equal to Γ(Zt, φ, γ2) = γZt:

dZt = BCe−CtZtdt + γZtdWt, Z0 = Ae−B (14)

This means that the standard error of the random perturbations of the growth rate is

proportional to weight. This choice of volatility has two main advantages. First, SDE (14)

has an explicit solution. Indeed, set Xt = log(Zt). By the Ito’s formula, for h > 0, the

conditional distribution of Xt+h given (Xs), s 6 t is:

Xt+h|(Xs)s6t ∼ N (Xt − Be−Ct(e−Ch − 1) − 1

2
γ2h, γ2h), X0 = log(A) − B

Thus, ∀t > 0, we have:

Zt = Ae−Be−Ct

e−
1

2
γ2t+ηt = f(t)e−

1

2
γ2t+ηt , ηt ∼ N (0, γ2t)

with Z0 = Ae−B. As a consequence, Zt is a multiplicative random perturbation of the

solution of the Gompertz model. Second, due to the assumption of the non-negativity of A,

Zt is almost surely non-negative, which is a natural constraint to model weight records.
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We then discretize the SDE. The discrete realization (Xtij) of the SDE is Markovian:

Xi,tij |Xi,tij−1
∼ N

(

Xi,tij−1
− Bie

−Citij−1(e−Ci(tij−tij−1) − 1) − 1

2
γ2(tij − tij−1), γ

2(tij − tij−1)
)

with Xi,0 = log(Ai) − Bi. The SDE model (8) on the logarithm of data is thus defined as:














log yij = Xtij + εij, εij ∼i.i.d. N (0, σ2), ∀i = 1, . . . , n, j = 0, . . . , ni

φi = (log Ai, Bi, log Ci) ∼i.i.d. N (µ, Ω), ∀i = 1, . . . , n

(15)

which can be written under the following matrix form:


















































(log yi0, log yi1, . . . , log yini
)′ =

(

log(Ai) − Bi, Xti1 , . . . , Xtini

)′
+ εi, εi ∼i.i.d. N (0, σ2Ini+1)

(

Xti1 , . . . , Xtini

)′
=

(

log(Ai) − Bie
−Citi1 , . . . , log(Ai) − Bie

−Citini

)′ − γ2 (ti1, . . . , tini
)′ + ηi

ηi ∼i.i.d N (0J , γ2Ti) , Ti = (min(tij, tij′))16j,j′6ni

(log Ai, Bi, log Ci) ∼i.i.d. N (µ, Ω)

(16)

5.3 Posterior computation and inference in the Gompertz model

Conditional distribution computation for the ODE mixed model is standard. We detail the

computation under the SDE mixed model. Let mprior
a , mprior

b , mprior
c , vprior

a , vprior
b vprior

c denote

the parameters of the three priors of the components of µ.

The conditional distribution of X i = (Xij)16j6ni
given (φi, γ

−2, yi, σ
2) is Gaussian:

X i|yi, σ
2, γ2, φi ∼ N (mpost

Xi
, V post

Xi
),

V post
Xi

= (σ−2Ini−1 + γ−2T−1
i )−1, mpost

Xi
= V post

Xi

[

σ−2(log yi1 . . . log yini
)′ + γ−2T−1

i uXi

]

uXi
= log Ai − Bi

(

e−Citi1 . . . e−Citini

)′ − 1

2
γ2 (ti1 . . . tini

)′

Let us introduce the (ni + 1) × (ni + 1)-matrix:

Gi =









σ2 0

0 γ2Ti









(17)

Let ω2
log A, ω2

B, ω2
log C denote the three diagonal elements of Ω. Let Ωk,(j,j′) denote the two-

vector composed of the elements on the k-th row and (j, j′) columns of Ω and Ω(j,j′),(j,j′) the

two-symetric-matrix composed of the elements on the (j, j′)-th rows and (j, j′)-th columns

of Ω. We have the following conditional distributions for the individual parameters log Ai
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and Bi:

log Ai | yi, X i, µ, Ω, Bi, log Ci, σ
2, γ2 ∼ N (mpost

1i , V post
1i )

Bi | yi, X i, µ, Ω, log Ai, log Ci, σ
2, γ2 ∼ N (mpost

2i , V post
2i )

where

V post
1i =



(1 . . . 1)G−1
i (1 . . . 1)′ +

1

ω2
log A |B,log C





−1

mpost
1i = V post

1i



(1 . . . 1)G−1
i uAi +

µlog A |B,log C

ω2
log A |B,log C





uAi = (log yi0 Xi1 . . . Xini
)′ + Bi

(

e−Citi0 . . . e−Citini

)′ − 1

2
γ2 (ti0 . . . tini

)′

ω2
log A|B,log C = ω2

log A − Ωlog A,(B,log C)Ω
−1
(B,log C),(B,log C)Ω

′

log A,(B,log C)

µlog A |B,log C = log a + Ωlog A,(B,log C)Ω
−1
(B,log C),(B,log C) ((Bi, log Ci)

′ − (b, log c)′)

and

V post
2i =



(e−Citi0 . . . e−Citini )G−1
i (e−Citi0 . . . e−Citini )′ +

1

ω2
B | log A,log C





−1

mpost
2i = V post

2i



(e−Citi0 . . . e−Citini )G−1
i uBi +

µB | log A,log C

ω2
B | log A,log C





uBi = (log yi0, Xi1 . . . Xini
)′ + log Ai −

1

2
γ2 (ti0 . . . tini

)

ω2
B| log A,log C = ω2

B − ΩB,(log A,log C)Ω
−1
(log A,log C),(log A,log C)Ω

′

B,(log A,log C)

µB | log A,log C = b + ΩB,(log A,log C)Ω
−1
(log A,log C),(log A,log C) ((log Ai, log Ci)

′ − (log a, log c)′)

The conditional distribution of log(a) is:

log a |(log Ai)i=1...n, ω
2
log A, mprior

a , vprior
a ∼ N (mpost

a , V post
a )

V post
a =

[

nω−2
log A + (vprior

a )−1
]−1

and mpost
a = V post

a

[

ω−2
log A

1

n

n
∑

i=1

log Ai +
mprior

a

vprior
a

]

Similarly, we have:

b |(Bi)i=1...n, ω
2
B, mprior

b , vprior
b ∼ N (mpost

b , V post
b )

V post
b =

[

nω−2
B + (vprior

b )−1
]−1

and mpost
b = V post

b

[

ω−2
B

1

n

n
∑

i=1

Bi +
mprior

b

vprior
b

]
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The conditional distribution of Ω−1 is:

Ω−1 |(φi)i=1...n, µ, R ∼ W (R + (φ − µ)(φ − µ)′, n + p + 1)

where φ − µ = [(φ1 − µ) . . . (φn − µ)] ∈ R3×n.

The conditional distribution of σ2 is:

σ−2|y, X, φ, αprior
σ , βprior

σ ∼ Γ(αpost
σ , βpost

σ )

αpost
σ = αprior

σ +
∑

i=1

n
ni + 1

2
and βpost

σ =





1

βprior
σ

+
1

2

n,ni
∑

i=1,j=0

(log yij − Xij)
2





−1

The posterior distributions of log Ci, log c and γ2 have no explicit form and we use the

Metropolis-Hastings random-walks.

The convergence of this Gibbs algorithm is ensured by the classical convergence theorem

proposed by Carlin and Louis (2000), the convergence of the Metropolis-Hastings algorithm

is ensured by the theorem proposed by Mengersen and Tweedie (1996).

5.4 Simulations

We simulate datasets mimicking chicken growth with n = 50 individuals and ni = 9 measure-

ments obtained every 5 days after birth. The population parameters are log(a) = log(3000),

b = 5, log(c) = log(14), Ω is assumed diagonal with diagonal elements equal to 100 and

σ−2 = 5. A 100 datasets are simulated via the mixed model defined by the Gompertz model

(13) and a 100 datasets with the mixed model defined by the Gompertz SDE (15), with

γ2 = 1. We estimate all the parameters under the ODE mixed model (13) and the SDE mixed

model (15), successively. Estimates are obtained as the expectation of the parameter posterior

distribution. Bias and root mean square error (RMSE) obtained with both algorithms are

presented in Table 1.

[Table 1 about here.]

When data are simulated under the ODE model, estimates obtained with the Bayesian

ODE algorithm are very satisfactory. Those obtained by the Bayesian SDE algorithm are also
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satisfactory although the bias for the variance parameters is larger. Note that, as expected,

the volatility parameter γ2 is estimated to be close to zero. When data are simulated under

the SDE model, estimates obtained with the Bayesian SDE model are very satisfactory, with

small bias and RMSE. On the contrary, the estimates obtained with the Bayesian ODE

algorithm have larger bias and RMSE, especially ω−2
log A (bias around 91%) and σ−2 (bias

equal to 27%).

5.5 Application on chicken growth data

In this section, we apply the proposed models on the real data of chicken growth. The

ODE and SDE models (13) and (15) are used to model the logarithm of the data. Posterior

expectations of the parameters are presented in Table 2. Diagnostic tools to validate the

models are applied to both ODE and SDE models: Table 3 presents the posterior predictive p-

values of both models computed for each time point and Figure 2 presents the corresponding

boxplots of the posterior predictive distributions. The estimates of the volatility parameter

γ2 is strictly positive: this means that the dynamical process that most likely represents the

growth is a stochastic process with non-negligible noise. Furthermore, the diagnostic tools

show a clear improvement from the ODE model to SDE model, both at early and late ages.

Figure 3 reports, for four subjects, the observed weights, the ODE prediction, the empirical

mean of the last 1000 simulated trajectories of the SDE (15) generated during the Gibbs

algorithm, their empirical 95 % confidence limits (from the 2.5th percentile to the 97.5th

percentile) and one simulated trajectory. Subjects 4 and 13 are examples of subjects with no

growth slow down. Both ODE and SDE models satisfactorily fit the observations. Subject 14

has a small observed weight decrease. For subject 1, the weight decrease is more important.

For both subjects, the ODE model fails to capture this phenomenon while the SDE model

does.

[Figure 1 about here.]
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[Table 2 about here.]

[Figure 2 about here.]

[Table 3 about here.]

[Figure 3 about here.]

6. Conclusion and discussion

We propose a Bayesian approach to nonlinear mixed models defined by stochastic differential

equations. These models are an alternative to classical nonlinear mixed models whose deter-

ministic regression function is too restrictive to model some unexplained biological processes

such as growth rate changes. We detail the case where the diffusion process has no explicit

distribution by proposing to use the Euler-Maruyama scheme to approximate the diffusion:

the conditional distribution is then Gaussian, implying an easy Bayesian implementation.

We control the error induced by this Euler approximate scheme on the posterior distribution.

In this context, auxiliary latent points are introduced to obtain a better approximation of

the diffusion. The choice of the discrete grids (τ0, . . . , τMi
) is complex and has been evoked

by Pedersen (1995) and Donnet and Samson (2008).

Our model differs from mixed models with continuous time autoregressive measurement

errors, as proposed by De la Cruz-Mesia and Marshall (2006) or others. These authors

assume that measurement errors have an auto-regressive structure. We assume that the

auto-regressive structure observed in residuals of classical nonlinear mixed models comes

from a model failure: the regression function is too restrictive and rigid to model random

variations of the biological process. Therefore, in our model, it is the regression process that

has an auto-regressive structure, while the observation measurements are assumed to be

independant and identically distributed.

The proposed model should prove to be useful for other applications in which deterministic
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models are too restrictive to take into account the variabilities that exist in real life. For exam-

ple, Picchini et al. (2006) propose a stochastic differential equation to model glucose/insulin

dynamics, where sources of variability are various (anxiety, rest, etc). The extension of this

work to mixed models using our approach should be of great interest.

An interesting area for future research is the development of model selection tools in this

context. Indeed, the analysis of covariate effects or the comparison between the ODE and the

SDE models require specific selection tools. Indeed, the method of pseudo-priors proposed

by Carlin and Chib (1995) and developed by others, which is very sensitive to the choice of

priors and pseudo-priors, would be difficult to use in practice in our context. Bayes factors

are complex to compute in these models but could be an interesting alternative. Finally,

the extension of this work to multidimensional SDEs would be of great interest in several

biological applications.
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Appendix

For SDE mixed models (10) where the Euler-Maruyama scheme has to be used to implement

the Gibbs algorithm, the approximate posterior distribution ph(θ|y) of the approximate

model (10) is estimated instead of the original posterior distribution p(θ|y). The error induced

by the Euler scheme on the posterior distributions may be controlled for restrictive volatility

functions.

We either assume a volatility function proportionnal to γ (Γ(Zt, φ, γ2) = γg(φ), with g(φ)

a function of φ) or an affine function of Zt (Γ(Zt, φ, γ2) = γ(g1(φ)Zt + g2(φ)), with g1(φ) and

g2(φ) two functions of φ).

Proposition 1: Let us assume that the drift function F : R × [t0, T ] × Rp → R is

infinitely differentiable in the variable space and its partial derivatives of any order are

uniformly bounded with respect to z and φ.

Let p(θ|y) and ph(θ|y) be the posterior distributions of the original (8) and the approxi-

mated (10) SDE mixed models, respectively. There exists a constant C(y) such that for all

0 < h < H0:

∥

∥

∥ph(θ|y) − p(θ|y)
∥

∥

∥

TV
6 C(y)h.

where ‖.‖TV denotes the total variation distance.

Proof. Let p(θ) denote the prior distribution. With the Bayes theorem, we have p(θ|y) =

p(y|θ)p(θ)
p(y)

. Donnet and Samson (2008) prove that there exists a constant C1, independent of θ

such that |p(y|θ) − ph(y|θ)| 6 hC1. Consequently |p(y) − ph(y)| 6 C1h and

|p(θ|y) − ph(θ|y)| 6
p(θ)

p(y)

∣

∣

∣

∣

∣

|p(y|θ) − p(y|θ)| + ph(y|θ)
ph(y)

|ph(y) − p(y)|
∣

∣

∣

∣

∣

6
C1h

p(y)
p(θ)

∣

∣

∣

∣

∣

1 +
ph(y|θ)
p(y)

∣

∣

∣

∣

∣

= C2(y) h
[

p(θ) + ph(θ|y)
]

.



20 Biometrics, – –

The result can be directly deduced:

∥

∥

∥ph(θ|y) − p(θ|y)
∥

∥

∥

TV
=

∫

|ph(θ|y) − ph(θ|y)|dθ

6 C2(y) h
∫

(p(θ) + ph(θ|y))dθ 6 2 C2(y) h

As a principal consequence of the proposition, the bias on the posterior mean is controlled:

under hypotheses on the moments of pθ(θ) and ph(θ|y), there exists a constant C ′
y such

that
∣

∣

∣Eθ|y[θ] − Eh
θ|y[θ]

∣

∣

∣ =
∣

∣

∣

∫

θph(θ|y)dθ − ∫

θph(θ|y)dθ
∣

∣

∣ 6 C ′
yh where Eθ|y[θ] and Eh

θ|y[θ] are

the expectation under the posterior distributions p(θ|y) and ph(θ|y), respectively. A similar

result can be obtained for the bias of the posterior mode.
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Figure 1. Growth curves of the 50 chickens.
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Figure 2. Posterior predictive distributions for the ODE and SDE models on chicken
growth data.
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Figure 3. Observations (circles), predictions obtained with the ODE mixed model (long
dashed line), mean SDE prediction (smooth solid line), 95% credibility interval obtained
with the SDE mixed model (dotted line) and one SDE realization (solid line), for subjects
1, 4 13 and 14.
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Table 1

Relative bias (RMSE) (%) obtained from the ODE and the SDE mixed models when datasets are simulated with the
ODE or the SDE mixed model.

Simulation model ODE SDE

Estimation model ODE SDE ODE SDE

µlnA -0.06 (0.49) 0.37 (0.72) -2.22 (2.44) -0.05 (1.36)
µB -0.21 (1.25) 0.55 (1.41) -3.34 (3.88) -0.02 (2.47)
µlnC -0.11 (1.35) -0.19 (1.57) 1.93 (2.59) -0.02 (1.77)
ω−2

lnA 31.69 (45.83) 65.06 (68.60) -91.55 (91.58) 17.92 (35.27)
ω−2

B 3.32 (25.32) 2.56 (25.70) -18.19 (35.88) 7.94 (23.38)
ω−2

lnC 22.19 (46.69) 36.59 (55.36) 20.69 (45.15) 22.54 (43.83)
γ−2 - 5.03 (18.27) - 8.28 (33.08)
σ−2 1.18 (7.52) 7.45 (10.98) -27.27 (27.92) 1.17 (8.87)
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Table 2

Posterior distributions for the ODE and SDE models on chicken growth data.

ODE SDE
mean sd median mean sd median

log a 7.77 0.03 7.77 7.75 0.04 7.75
b 4.17 0.03 4.17 4.15 0.04 4.15

log c 2.75 0.03 2.75 2.78 0.03 2.78
Ω−1

1,1 117.30 31.74 113.60 93.89 20.45 92.10
Ω−1

1,2 -128.50 38.13 -123.70 -90.04 24.68 -88.46
Ω−1

1,3 -4.57 0.22 -4.02 -4.40 9.96 -4.13
Ω−1

2,2 172.10 49.95 165.40 146.10 37.45 141.70
Ω−1

2,3 22.64 15.87 21.16 23.86 15.55 22.01
Ω−1

3,3 36.68 8.14 35.89 38.04 10.07 36.57
σ−2 225.5 14.74 225.10 630.22 83.44 623.92
γ−2 9.07 1.02 9.00
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Table 3

Posterior predictive p-values for the ODE and SDE mixed models on chicken growth data.

time points 0 4 6 8 12 16 20 24 28 32 36 40

ODE model 0.55 0.00 0.86 0.80 0.08 0.48 0.90 0.73 0.02 0.99 0.91 0.46
SDE model 0.49 0.23 0.40 0.45 0.43 0.60 0.64 0.60 0.43 0.57 0.64 0.56


