ISOLATED BOUNDARY SINGULARITIES OF SEMILINEAR ELLIPTIC EQUATIONS - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2009

ISOLATED BOUNDARY SINGULARITIES OF SEMILINEAR ELLIPTIC EQUATIONS

Résumé

Given a smooth domain $\Omega\subset\RR^N$ such that $0 \in \partial\Omega$ and given a nonnegative smooth function $\zeta$ on $\partial\Omega$, we study the behavior near $0$ of positive solutions of $-\Delta u=u^q$ in $\Omega$ such that $u = \zeta$ on $\partial\Omega\setminus\{0\}$. We prove that if $\frac{N+1}{N-1} < q < \frac{N+2}{N-2}$, then $u(x)\leq C \abs{x}^{-\frac{2}{q-1}}$ and we compute the limit of $\abs{x}^{\frac{2}{q-1}} u(x)$ as $x \to 0$. We also investigate the case $q= \frac{N+1}{N-1}$. The proofs rely on the existence and uniqueness of solutions of related equations on spherical domains.
Fichier principal
Vignette du fichier
ArtBVPV8.pdf (278.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00358178 , version 1 (03-02-2009)
hal-00358178 , version 2 (09-07-2009)
hal-00358178 , version 3 (14-07-2009)

Identifiants

Citer

Marie-Françoise Bidaut-Veron, Augusto C. Ponce, Laurent Veron. ISOLATED BOUNDARY SINGULARITIES OF SEMILINEAR ELLIPTIC EQUATIONS. 2009. ⟨hal-00358178v1⟩
123 Consultations
179 Téléchargements

Altmetric

Partager

More