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Boundary isolated singularities of positive solutions
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Laboratoire de Mathématiques et Physique Théorique

Université François-Rabelais, Tours, FRANCE

Résumé

Assume Ω ⊂ R
N is a smooth domain, x0 ∈ ∂Ω and q ≥ (N + 1)/(N − 1). We study the

behavior near x0 of any positive solution of (E) −∆u = uq in Ω which coincides with some
ζ ∈ C2(∂Ω) on ∂Ω \ {x0}. We prove that, if (N + 1)/(N − 1) < q < (N + 2)/(N − 2), u

satisfies u(x) ≤ C |x− x0|−2/(q−1)
and we give the limit of |x− x0|2/(q−1)

u(x) as x → x0.

In the case q = (N + 1)/(N − 1) u satisfies u(x) ≤ C |x− x0|1−N (ln(1/|x|))(1−N)/2 and a
corresponding precise asymptotic is obtained. We also study some existence and uniqueness
questions for related equations on spherical domains.

1 Introduction

In this article we study the isolated boundary singularities of a positive function u satisfying,
for some q > 1,

− ∆u = uq, (1.1)

in a smooth domain Ω ⊂ R
N (N ≥ 2). More precisely we assume that u is continuous in Ω\{x0}

where x0 is some boundary point of Ω and coincides on ∂Ω \ {x0} with a smooth function ζ
defined on the whole boundary ∂Ω. This function may develop an isolated singularity at x0 and
the whole question is to describe its behaviour near x0. When (1.1 ) is replaced by the equation
with the other sign, namely

− ∆u+ |u|q−1u = 0, (1.2)

the problem has been adressed first by Gmira and Véron [14]. Later on it was extended to
nonsmooth domains in [15]. One of the key result in [14] is the existence of a critical exponent
q = q1 := (N + 1)/(N − 1). It is proved that if q ≥ q1 any boundary isolated singularity for a
solution of (1.2 ) is removable. On the opposite, if 1 < q < q1, there exist solutions with boudary
isolated singularity. Furthermore, such singular behaviour have been completely characterized :
either if u ≥ 0, or if 1 + 2/N ≤ q < q1, or if N = 2. For positive solutions, the behaviour of u
near x0 can be of two types :

(i) Either
lim

x → x0
x−x0

|x−x0|
→ σ

|x− x0|2/(q−1)u(x) = ω(σ)

1



locally uniformly in σ where ω satisfies a particular nonlinear elliptic equation on an hemisphere
S of the unit sphere SN−1,

(ii) or there exists k ≥ 0 such that

u(x) ≈ kP (x, x0) as x→ x0

where P is the Poisson kernel in Ω.

Furthermore it is proved that the two types of behaviour truly exist. This result play a funda-
mental role in the theory of boundary trace of positive solutions of (1.2 ) which was later on
developed by Marcus and Véron [20], [21], [22] using analytic tools, and Le Gall [18] or Dynkin
and Kuznetsov [10],[11] with a probabilistic approach.

For equation (1.1 ), the interior singularity problem was initiated by Lions [19] in the subcri-
tical case 1 < q < N/(N − 2) and thouroughly analyzed by Gidas and Spruck in a the seminal
article [13] in the range N/(N − 2) ≤ q < q2 := (N + 2)/(N − 2). There are several key points
in their article, in particular :

(i) Existence of a universal a priori estimate : any positive solution of (1.1 ) in the ball B1(a)\{a}
satisfies

u(x) ≤ C|x− a|−2/(q−1) ∀x ∈ B1/2(a) \ {a}, (1.3)

for some C = C(N, q) > 0.
(ii) Non-existence of positive smooth solution of (1.1 ) in R

N .

(iii) Uniqueness of positive solutions of a class of equations on the unit sphere SN−1,

− ∆′ω + ℓw = wq (1.4)

where ∆′ is the Laplace-Beltrami operator and 0 < (q − 1)ℓ ≤ N − 1. In this case q ≤ q3 :=
(N + 1)/(N − 3).

(iii) Existence of the limit of |x− a|2/(q−1)u(x) when x→ a.

The boundary singularity problem associated to (1.1 ) has been treated by Bidaut-Véron
and Vivier [6] in the subcritical range 1 < q < q1. Here it is proved that there exists k ≥ 0 such
that

u(x) ≈ kP (x, x0) as x→ x0.

In this article we consider the range of exponent q1 ≤ q < q2 and we prove a series of results
which extend Gidas and Spruck’s work to the boundary singularity framework. Our main results
are the following.

Theorem A If 1 < q < q2, any positive solution u of (1.1 ) which is continuous in Ω \ {x0}
and coincide on ∂Ω \ {x0} with some function ζ ∈ C(∂Ω), satisfies

u(x) ≤ C|x− x0|−2/(q−1) ∀x ∈ BR0
(x0) ∩ Ω, (1.5)

for some R0 and C = C(N, q,Ω, ||ζ||L∞(BR0
(x0)∩∂Ω∩Ω)) > 0.

The proof of this result is based upon a topological argument (the doubling lemma) and a
method introduced by Poláčik, Quittner and Souplet [24].
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Theorem B Let q1 ≤ q ≤ q3, q 6= q2, ζ ∈ C(∂Ω) and u be as above and satisfies (1.5 ). If we
suppose that the boundary singular point x0 is 0 and the outward normal unit vector to ∂Ω at 0
is −eN, then either u extends to 0 as a continuous function, or

u(x) =

{

|x|−2/(q−1)ω0(x/|x|) + ◦(1)) if q > q1

k∗N |x|1−N ln(1/|x|)(1−N)/2(xN/|x| + ◦(1)) if q = q1,
(1.6)

where k∗N is some positive constant depending on N and ω0 is the unique positive solution of

− ∆′ω =
2(N − q(N − 2))

(q − 1)2
ω + wq (1.7)

in SN−1
+ := SN−1 ∩ {x : xN > 0} which vanishes on the equator ∂SN−1

+ .

Furthermore, it is proved in [9] that positive solutions with the two above behaviour truly
exist. Besides the classical energy approach for this problem, a key point for proving the asymp-
totic when q > q1 is a uniqueness result for positive solutions of (1.7 ). This is obtained by
proving first that such solutions depend only on the angular variable cos−1(xN/|x|) [23] and
then that the corresponding ODE admits a unique positive solution. This last point is based on
a delicate adaptation of a series of results due to Kwong [16] and Kwong and Li [17]. The type
of equation (1.7 ) is imbedded into a more general problem, namely

{

−∆′ω = ℓω +wq−1ω in S
ω = 0 on ∂S;

(1.8)

where S is a smooth subdomain of SN−1, N ≥ 3. We prove that ω satisfies a general Pohozaev
type identity

(

(N − 3)q

2(q + 1)
− N + 1

2(q + 1)

)∫

S
|∇′ω|2 φdσ − d

2(q + 1)
(ℓ(q − 1) +N − 1)

∫

S
ω2φdσ

=
1

2

∫

∂S
|∇′ω|2 〈∇′φ, ν〉 dτ,

(1.9)

where φ is any spherical harmonic of degree 1. As a consequence we derive

Theorem C Assume S ⊂ SN−1
+ .

(i) If ℓ ≥ N − 1 any nonnegative solution of (1.9 ) is trivial.

(ii) If 1 < q < q3 and ℓ < N − 1, there exists a positive solution to (1.9 ).

(iii) Assume S is star-shaped in the sense that there exists a spherical harmonics φ positive on
S such that 〈∇′φ, ν〉 ≤ 0 on ∂S. Then, if q ≥ q3, ℓ(q − 1) ≤ 1 − N , with one of these two last
inequalities strict, any solution of (1.9 ) is trivial. If q = q3, q = q3, ℓ(q − 1) = 1−N , the same
result holds provided ω ≥ 0.

Theorems A, B and C have been announced in [3]. Our paper is organised as follows. 1- Intro-
duction. 2- The a priori estimate. 3- Characterization of the isolated singularities. 4- Equation
on a spherical domain.
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2 The a priori estimate

In this section Ω is a smooth bounded domain in R
N and 0 ∈ ∂Ω. We denote ρ(x) =

dist (x, ∂Ω), Ω
∗

= Ω \ {0} and ∂Ω∗ = ∂Ω \ {0}, and define the three exponents q1 = (N +
1)/(N − 1), q2 = (N + 2)/(N − 2) and q3 = (N + 1)/(N − 3). We consider a positive function
u ∈ C(Ω

∗
) satisfying

{

−∆u = uq in Ω
u = ζ in ∂Ω∗.

(2.1)

where ζ ∈ C(∂Ω). In the sequel, C will denote a positive constant depending upon structural
assumptions, but not on the variables, the value of which may change from line to line. We first
recall the following standard consequence of the super harmonicity

Theorem 2.1 For any q > 0, uq ∈ L1(Ω, ρdx) and the boundary trace of u is a positive Radon
with the form ζdS + γδ0 for some γ ≥ 0. Furthermore

u(x) =

∫

Ω
G(x, y)uq(y)dy +

∫

∂Ω
P (x, y)ζ(y)dS(y) + γP (x, 0) ∀x ∈ Ω (2.2)

where G (resp. P) is the Green (resp. Poisson) kernel in Ω. If q ≥ q1, then γ = 0.

Proof. Since u is super harmonic and positive, we can apply Doob’s theorem which asserts that
∆u ∈ L1(Ω, ρdx), that the boundary trace of u is a positive Radon measure and that u is the sum
of the Green potential of −∆ and the Poisson potential of its boundary trace. In our case the
boundary trace may have an atom only at 0 and it coincides with ζ on ∂Ω∗. Thus uq ∈ L1(Ω, ρdx)
and we obtain (2.2 ). Clearly u(x) ≥ γP (x, 0) in Ω. If q ≥ q1, P (., 0) /∈ Lq1(Ω, ρdx), therefore
γ = 0. �

The main result of this section is the a priori estimate.

Theorem 2.2 Assume N ≥ 2, 1 < q < q2. There exists C = C(q,Ω, ||ζ|| L∞) > 0 such that for
any positive solution of (3.1 ) there holds

u(x) ≤ C|x|−2/(q−1) ∀x ∈ Ω. (2.3)

The proof is based on a beautiful method developed by Poláčik, Quittner and Souplet [24].
We recall their doubling lemma

Lemma 2.3 Let (X, d) be a complete metric space, Σ ⊂ X be closed, D ⊂ Σ be non-empty and
Γ => Σ \D. Let M : D 7→ (0,∞) be a function bounded on the compact subsets of D. Let k > 0
be fixed. If there exists y ∈ D such that

M(y)dist (y,Γ) > 2k, (2.4)

there exists x ∈ D such that

(i) M(x)dist (x,Γ) > 2k

(ii) M(x) ≥M(y)

(iii) 2M(x) ≥M(z) ∀z ∈ D ∩Bk/M(x)(x).

(2.5)
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Lemma 2.4 Let N ≥ 2 and 1 < q < q2 (q > 1 if N = 2). There exists R0 > 0 and C =
C(N, q, δ) > 0 such that for any R ≤ R0, δ > 0, ζ ∈ C∂Ω such that ‖ζ‖L∞ ≤ δ and any
nonnegative solution u of

{

−∆u = uq in Ω ∩ (BR \BR/2)

u = ζ on ∂Ω ∩ (BR \BR/2),
(2.6)

there holds

u(x) ≤ C (min{R − |x|, |x| −R/2})−2/(q−1) ∀x ∈ Ω ∩ (BR \BR/2). (2.7)

Proof. We can always assume that R0 = 1 and R ≤ 1. By setting u(x) = R−2/(q−1)v(x/R) and
z(x/R) = R2/(q−1)ζ(x), we can suppose that R = 1. Then Ω is changed into R−1Ω which has a
bounded curvature since R > 1 which, for the sake of simplicity, will be still denoted by Ω . If
we assume that the result is not true, then for any k > 0 there exists a solution vk of (2.6 ) with
boundary value zk, with Ω ∩ (BR \BR/2) replaced by Ω ∩ (B1 \B1/2) and yk ∈ Ω ∩ (B1 \B1/2)
such that

Mk(yk) ≥
2k

m(yk)
,

where we have set m(y) = min{1 − |y|, 1/2 − |y|} and Mk(y) = v
(q−1)/2
k (y) for y ∈ Ω ∩ (B1 \

B1/2). We apply Lemma 2.3 with X = R
N , Σ = Ω ∩ (B1 \B1/2) = Ω ∩ (B1 \ B1/2), D =

(

Ω ∩ (B1 \B1/2)
)

∪
(

∂Ω ∩ (B1 \B1/2)
)

and Γ = Σ \D = Ω ∩ {x : |x| = 1 or |x| = 1/2}. Since
the curvature of ∂Ω is uniformly bounded (even with respect to R), m(y) ≤ dist (y,Γ) ≤ θm(y)
for some θ ≥ 1 and any y ∈ D. Furthermore, by taking the initial R0 small enough, we can
assume after the scaling that θ < 2. By Lemma 2.3 there exists xk ∈ D such that

(i) Mk(xk)dist (xk,Γ) > 2k

(ii) Mk(xk) ≥Mk(yk)

(iii) 2Mk(xk) ≥Mk(z) ∀z ∈ Dk,

(2.8)

where Dk := D ∩ Bk/Mk(xk)(xk). Set D̃k = Ω ∩ Bk/Mk(xk)(xk), then Dk ⊂ D̃k. Conversely, if

z ∈ D̃k, then

|z| ≤ |xk| +
k

Mk(xk)
< |xk| +

dist (xk,Γ)

2
< |xk| +

θ

2
(1 − |xk|) ≤ 1. (2.9)

Furthermore, since |z| ≥ |xk| − |xk − z| ≥ |xk| − kM−1
k (xk), it follows also from (2.8 )-(i)

|z| > |xk| −
dist (xk,Γ)

2
≥ |xk| −

θm(xk)

2
≥ |xk| −

θ

2
(|xk| −

1

2
) =

θ

4
+

(

1 − θ

2

)

|xk| ≥
1

2
. (2.10)

It implies Dk = D̃k. Next we set

wk(ξ) =
1

M
2/q−1)
k (xk)

vk

(

xk +
ξ

Mk(xk)

)

=
1

vk(xk)
vk

(

xk +
ξ

Mk(xk)

)

.
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The function wk is defined for xk +M−1
k (xk)ξ ∈ D, that is 1/2 <

∣

∣xk +M−1
k (xk)ξ

∣

∣ < 1. If we
notice again that, for |ξ| < k, we have

∣

∣xk +M−1
k (xk)ξ

∣

∣ ≤ |xk| + kM−1
k (xk) ≤ 1

and
∣

∣xk +M−1
k (xk)ξ

∣

∣ ≥ |xk| − kM−1
k ≥ 2−1

from (2.8 )–(2.9 ), thus xk +M−1
k (xk)ξ ∈ Dk. Furthermore wk(ξ) = ζk(ξ) if xk +

ξ

Mk(xk)
∈ ∂Ω,

where

ζk(ξ) =
1

M
2/q−1)
k (xk)

zk

(

xk +
ξ

Mk(xk)

)

.

Clearly wk satisfies
− ∆wk = wq

k (2.11)

in and wk(0) = 1, w
(q−1)/2
k (ξ) ≤ 2 for any ξ such that xk + M−1

k (xk)ξ ∈ Dk. By the local
elliptic equations estimates, interior and up to the boundary, the set of functions {wk} is locally
compact for the uniform convergence topology of {ξ; |ξ| ≤ k, ξ ∈ Mk(xk) (Dk − xk)}. At end,
there exist a sub-sequence {kn} such that xkn

→ x0 for some x0 ∈ D and wkn
→ w in the local

uniform topology of R
N if x0 ∈ Ω, or of some half-space H if x0 ∈ ∂Ω. Furthermore w(0) = 1,

0 ≤ w ≤ 2 and is a solution of (2.11 ), either in whole R
N , or in H, in which case it vanishes

on ∂H. In the two cases it is classical that such a solution cannot exist (see [13] and [8]), which
completes the proof. �

Proof of Theorem 2.2. It is an immediate consequence of Lemma 2.4 in taking, for |x| ≤ 4R0/3,
R = 4|x|/3 in inequality (2.7 ). �

3 Caracterization of the isolated singularities

Assume Ω is a smooth domain in R
N and 0 ∈ ∂Ω. We shall denote

Ω
∗

= Ω \ {0} and ∂Ω∗ = ∂Ω \ {0}.

We recall that q1 = (N + 1)/(N − 1), q2 = (N + 2)/(N − 2) and q3 = (N + 1)/(N − 3).
Since we are dealing with the local behaviour of u near 0, we can assume that Ω is bounded,

otherwile we replace it by a smooth bounded domain the boundary of which coincides with ∂Ω
in a neighborhood of 0. We denote by (x1, ...xN ) the coordinates of x and by B = {e1, ..., eN}
the canonical orthonormal basis in R

N . The preliminaries and the geometric framework of the
study are similar to the ones developed in [14], but, for the sake of completeness, we repeat their
presentation. Let u be a positive function satisfying

{

−∆u = uq in Ω
u = ζ in ∂Ω∗.

(3.1)
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Up to a rotation we can assume that the tangent plane T0Ω to ∂Ω at 0 is the hyperplane {x =
(x1, ..., xN ) : xN = 0} and the outward unit normal vector is −eN. There exist a neighborhood
G of 0 and a C3 real value function φ defined on G ∩ T0Ω such that

G ∩ ∂Ω = {x = (x′, xN ) : x′ ∈ G ∩ T0Ω, xN = φ(x′)}.

Furthermore φ(0) = ∇φ(0) = 0. Setting Φ(x) = y, with yi = xi if i = 1, ..., N −1 and yN = xN −
φ(x′), we can assume that Φ is a C2 diffeomorphism fromG to G̃ = Φ(G), and Φ(Ω∩G) = G̃∩R

N
+ .

Let z ∈ C3(Ω be the harmonic extension of ζ in Ω. We denote

u(x) − z(x) = ũ(y), z(x) = z̃(y), ζ(x) = ζ̃(y), (3.2)

for x = Φ−1(y) with y ∈ G̃ ∩ R
N
+ . Notice that ũ ≥ 0 by Theorem 2.1. A lengthy computation

yields to

{

−∆ũ− |∇φ|2 ũyN ,yN
+ 2〈∇φ,∇ũyN

〉 + ũyN
∆φ = (ũ+ z̃)q in G̃ ∩ R

N
+

ũ = 0 on G̃ ∩ R
N−1 \ {0}.

(3.3)

By scaling, we can also assume that B1(0) ⊂ Ω̃. Let (r, σ) ∈ R+ × SN−1 be the spherical
coordinates in R

N , SN−1
+ = SN−1 ∩ R+. If q1 < q < q3, we denote by ω the unique positive

solution to

{

∆′ω + λN,qω + |ω|q−1 ω = 0 on SN−1
+

ω = 0 on ∂SN−1
+ ,

(3.4)

where

λN,q =
2

q − 1

(

2q

q − 1
−N

)

. (3.5)

Theorem 3.1 Assume q1 < q < q2. Let ζ ∈ C3(∂Ω) and u ∈ C(Ω
∗
) ∩ C2(Ω) be a solution of

(3.1 ). Then

(i) either

lim
x → 0

x/ |x| → σ

|x|2/(q−1) u(x) = ω(σ), locally uniformly on SN−1
+ , (3.6)

(ii) or u can be extended to Ω as a continuous function.

We recall that, in this range of exponents, there exists a positive constant c = c(Ω, q, ‖ζ‖L∞)
such that

u(x) ≤ c |x|−2/(q−1) , (3.7)

by Theorem 2.2. Therefore Theorem 3.3 is an immediate consequence of the next result, were
we prove that the convergence of |x|2/(q−1) occurs provided the above estimate holds and q ∈
(q1, q3) \ q2.

7



Proposition 3.2 Assume q1 < q < q3, q 6= q2. ζ ∈ C3(∂Ω) and u ∈ C(Ω
∗
)∩C2(Ω) be a solution

of (3.1 ) such that |x|2/(q−1) u(x) is bounded. Then, either (3.6 ) holds, or u can be extended to
Ω as a continuous function.

Proof. The three first steps of the proof present some similarities with elements of the proof of
[14, Th 4.1], so we shall just give a short view of them, adapted to the specific equation (3.3 ).

Step 1- Reduction to an asymptotically autonomous equation. In spherical coordinates we denote
by ∇′ the tangential gradient to SN−1 identified to the covariant derivative via the imbedding
SN−1 →֒ R

N and by n = y/ |y| the outward normal unit vector to SN−1. Lenghty computations
show that (3.3 ) reads as follows in spherical coordinates,

r2ũrr

(

1 − 2φr〈n, eN 〉 + |∇φ|2 〈n, eN 〉2
)

+rũr

(

N − 1 − r〈n, eN 〉∆φ− 2〈∇′〈n, eN 〉,∇′φ〉 + r |∇φ|2 〈∇′〈n, eN 〉, eN 〉
)

+〈∇′ũ, eN 〉
(

2φr − |∇φ|2 〈n, eN 〉 − r∆φ
)

+r〈∇′ũr, eN 〉
(

〈n, eN 〉 |∇φ|2 − 2φr

)

− 2〈∇′ũr,∇′φ〉〈n, eN 〉

+ |∇φ|2 〈∇′〈∇′ũ, eN 〉, eN 〉 − 2

r
〈∇′〈∇′ũ, eN 〉,∇′φ〉 + ∆′ũ+ r2(ũ+ z̃)q = 0.

(3.8)

Use the transformation

t = ln r, t ≤ 0, , ũ(r, σ) = r−2/(q−1)v(t, σ), z̃(r, σ) = r−2/(q−1)α(t, σ),

we obtain finally that v satisfies

(1 + ǫ1) vtt +

(

N − 2
q + 1

q − 1
+ ǫ2

)

vt + (λN,q + ǫ3) v + ∆′v + 〈∇′v,−→ǫ4 〉
+ 〈∇′vt,

−→ǫ5 〉 + 〈∇′〈∇v, eN 〉,−→ǫ6 〉 + (v + α)q = 0,
(3.9)

on (−∞, 0] × SN−1
+ , where the ǫj are functions of t and σ which are linear functions of φ, ∇φ,

∆φ and ∇φ2. Furthermore v = 0 on (−∞, 0] × ∂SN−1
+ .

Step 2- The a priori estimates. By the choice of φ, we have

|φ(x)| ≤ Cr2, |∇φ(x)| =

√

|φr|2 + r−2 |∇′φ|2 ≤ Cr and |∆φ| ≤ C.

Thus
|ǫj(t)| ≤ Cet j = 1, ..., 6. (3.10)

Since ζ is positive and bounded, 0 ≤ α(t, σ) ≤ Ce2t/(q−1). Moreover v and (v + α)q are also
bounded, thus we can use the Agmon-Douglis-Nirenberg results on (−∞, 0] × SN−1

+ , to derive

W 2,p estimates for any p < ∞ in any cylinder [T − 1, T + 1] × SN−1
+ (T ≤ −2). By the Morrey

imbedding theorem, for any 0 < γ < 1 there exists M > 0 such that

‖v‖
C1,γ ([T−1,T+1]×SN−1

+
)
≤M. (3.11)
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Next we compute ǫj t and ∇ǫj. Using the fact that D2φ and D3φ are bounded (because ∂Ω is
C3), we derive that, for any j = 1, ..., 6, there exists Cj > 0 such that

max{|ǫj t(σ, t)| +
∣

∣∇′ǫj(σ, t)
∣

∣ : σ ∈ SN−1
+ } ≤ Cje

t, (3.12)

for t ≤ 0. Furthermore, the explicit values of the ǫj given in [14] show that, for j = 1, 5 and 6,
there holds

max{|ǫj tt(σ, t)| +
∣

∣∇′ǫj t(σ, t)
∣

∣+
∣

∣D2ǫj t(σ, t)
∣

∣ : σ ∈ SN−1
+ } ≤ Cje

t. (3.13)

Actually, for such indices, the ǫj depend only on the first derivatives of φ. Therefore, it follows
from Schauder estimates,

‖v(t, .)‖
C2,γ(SN−1

+
)
+ ‖vt(t, .)‖

C1,γ(SN−1

+
)
+ ‖vtt(t, .)‖

Cγ(SN−1

+
)

+ sup|h|≤1 |h|−γ ‖vtt(t+ h, .) − vtt(t, .)‖C(SN−1
+

)
≤M.

(3.14)

Multiplying (3.9 ) by vt and integrating over SN−1
+ yields to

∫

SN−1
+

(

N − 2
q + 1

q − 1
+ ǫ2 +

1

2
ǫ1 t

)

v2
t dσ − 1

2

∫

SN−1
+

ǫ1 tv
2dσ

=
1

2

d

dt

∫

SN−1

+

(

|∇′v|2 − (1 + ǫ1)v
2
t − (λN,q + ǫ3)v

2 − 2

q + 1
(v + α)q+1

)

dσ

+

∫

SN−1

+

((v + α)qαt − vt (〈∇′v,−→ǫ4 〉 − 〈∇′vt,
−→ǫ5 ) − 〈∇′〈∇′v, eN 〉,−→ǫ6 〉) dσ.

(3.15)

Notice that N − 2(q + 1)/(q − 1) 6= 0 since q 6= q2, thus, by (3.10 ), (3.12 ) and (3.11 ), there
holds

∫ 0

−∞

∫

SN−1

+

v2
t dσ <∞. (3.16)

Differentiating (3.9 ) with respect to t, multiplying by vtt and using (3.10 )-(3.16 ), we derive

∫ 0

−∞

∫

SN−1
+

(

v2
tt +

∣

∣∇′vt

∣

∣

2
)

dσ <∞. (3.17)

Because t 7→
∫

SN−1

+

v2
t (t, .)dσ and t 7→

∫

SN−1

+

v2
tt(t, .)dσ are uniformly continuous on (−∞, 0], by

(3.14 ), we obtain finally,

lim
τ→−∞

∫

SN−1

+

(

v2
t + v2

tt

)

(τ, .)dσ = 0. (3.18)

Step 3- The convergence. Let T (v) =
⋃

t≤0{v(t, .)} be the negative trajectory of v. By (3.14 )

and Ascoli’s theorem, T (v) is relatively compact in in C2(SN−1
+ ). By standard results, the limit

set Γ =
⋂

τ<0

⋃

t≤τ{v(t, .)} is a non-empty connected compact set. Let t → −∞ in (3.9 ), we

9



derive from (3.10 ), (3.12 ) and (3.18 ), that any ω ∈ Γ is a positive solution of (3.4 ). Therefore,
either

lim
t→−∞

v(t, .) = ω(.) (3.19)

in C2(SN−1
+ ), or

lim
t→−∞

v(t, .) = 0 (3.20)

in the same topology.

Step 4- Removable singularity. Assume that (3.20 ) holds. We write (3.9 ) under the form

vtt +

(

N − 2
q + 1

q − 1

)

vt + λN,qv + ∆′v +H + (v + α)q = 0, (3.21)

where
H = ǫ1vtt + ǫ2vt + ǫ3v + +〈∇′v,−→ǫ4 〉 + 〈∇′vt,

−→ǫ5 〉 + 〈∇′〈∇v, eN 〉,−→ǫ6 〉. (3.22)

Thus, by (3.12 ), (3.13 ),

H∗(t) := max{|H(σ, t)| + |Ht(σ, t)| +
∣

∣∇′H(σ, t)
∣

∣ : σ ∈ SN−1
+ } ≤ Cet. (3.23)

Since the first eigenvalue of −∆ in W 1,2
0 (SN−1

+ ) is N − 1,
∫

SN−1

+

v∆v dσ ≤ (1 −N)

∫

SN−1

+

v2 dσ.

If we set

X(t) =

(

∫

SN−1
+

v2 dσ

)1/2

then
∫

SN−1

+

vtv dσ = X(t)X ′(t) and

∫

SN−1

+

vttv dσ ≤ X(t)X ′′(t).

Furthermore (ṽ+α)q ≤ 2q−1(ṽq +αq) ≤ 2q−1ṽq +Ce2qt/(q−1). Multiplying (3.9 ) by v, integrating
over SN−1

+ and using the previous estimates yields to

X ′′ +

(

N − 2
q + 1

q − 1

)

X ′ − (N − 1 − λN,q − ǫ(t))X + Ce2qt/(q−1) +H∗ ≥ 0, (3.24)

where ǫ(t) = ‖v(t, .)‖q−1
L∞ → 0 as t → −∞ and C is some positive constant. By assumption

ℓ = N − 1 − λN,q > 0. For 0 < ǫ < ℓ there exists T < 0 such that ǫ(t) < ǫ on (−∞, T ]. Because
Ce2qt/(q−1) +H∗ ≤ Cve

t, X satisfies

X ′′ +

(

N − 2
q + 1

q − 1

)

X ′ − (ℓ− ǫ)X + Cve
t ≥ 0 (3.25)

on (−∞, T ]. The linear equation

Y ′′ +

(

N − 2
q + 1

q − 1

)

Y ′ − (ℓ− ǫ)Y = 0, (3.26)

10



has two linearly independent solutions

Y1,ǫ(t) = er1,ǫt and Y2(t) = er2,ǫt,

where r1,ǫ and r2,ǫ are respectively the positive and the negative root of the algebraic equation

r2 +

(

N − 2
q + 1

q − 1

)

r − ℓ+ ǫ = 0.

Furthermore

r1,ǫ →
q + 1

q − 1
and r2,ǫ →

2

q − 1
+ 1 −N as ǫ→ 0.

We find a particular solution Ỹ of the non-homogeneous equation

Y ′′ +

(

N − 2
q + 1

q − 1

)

Y ′ − (ℓ− ǫ)Y = −Cve
t

under the form

Ỹ (t) = Ave
t where Av = −Cv

(

λN,q − 2
q + 1

q − 1
− ǫ

)−1

.

Because X(t) = o(Y2(t)) at −∞, we can apply maximum principle to (3.25 ) and get

X(t) ≤ X(T )

Y1(T )
Y1(t) + Ỹ (t) ≤ CY1(t) +Ave

t on (−∞, T ]. (3.27)

This proves that the L2(SN−1
+ ) norm of v(t, .) is exponentially decaying as t→ −∞. If we return

to (3.9 ) and apply the L2 regularity theory, we derive that the W 2,2(SN−1
+ ) norm of v(t, .)

satisfies
‖v(t, .)‖W 2,2 ≤ C(Y1(t) + et) on (−∞, T ]. (3.28)

By the Sobolev imbedding theorems

‖v(t, .)‖Lp ≤ C(Y1(t) + et) on (−∞, T ], (3.29)

where

p =















2(N − 1)/(N − 5) if N ≥ 6

any p <∞ if N = 5

∞ if N ≤ 4.

Therefore
‖vq(t, .)‖Lr ≤ CY q

1 (t) on (−∞, T ]. (3.30)

and

r >







2(N − 1)

q3(N − 5)
= r∗ > 2 if N ≥ 6

any p <∞ if N ≤ 5.
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Returning to equation (3.9 ) we derive from (3.29 ) and (3.30 ) and the Agmon-Douglis-Nirenberg
estimates that

‖v(t, .)‖W 2,r ≤ C(Y1(t) + et) on (−∞, T ], (3.31)

which is an improvement with respect to (3.28 ). Iterating this process and using Schauder
estimates, we finally get

‖v(t, .)‖C2 ≤ C(Y1(t) + et) on (−∞, T ]. (3.32)

Therefore the function H∗ defined in (3.23 ) satisfies H∗(t) ≤ Cv(Y1(t) + et)et. If we return to
(3.24 ) and follows the same method as above, we derive

X(t) ≤ X(T )

Y1(T )
Y1(t) + C(Y1(t) + et)et on (−∞, T ]. (3.33)

Iterating this process we end with

‖v(t, .)‖C2 ≤ CY1(t) on (−∞, T ] on (−∞, T ]. (3.34)

If we return to the function u, and use the fact that ǫ can be taken as small as we want, we
derive that u remains bounded in Ω. This implies that u is a smooth solution in Ω by using the
representation formula (2.2 ) with γ = 0. �

In the critical case q = q1 it appears a superposition of the linear and nonlinear effects
since their characteristic exponents 2/(q − 1) and N − 1 coincide. Similar phenomena have
been observed several times in the past [25], [1], [7]. We recall that xN SN−1

+

generates the first

eigenspace of −∆′ in W 1,2
0 (SN−1

+ ). We denote by φ1 the positive first eigenfunction normalized
by ‖φ1‖L2(SN−1

+
) = 1 and

k∗N =











2

∫

SN−1

+

φ
2N/(N−1)
1 dσ

N(N − 1)











(1−N)/2

. (3.35)

Theorem 3.3 Assume q = q1 and ζ and u are as in Theorem 3.3. Then

(i) either

lim
x → 0

x/ |x| → σ

|x|N−1 (− ln |x|)(N−1)/2 u(x) = k∗Nφ1(σ), locally uniformly on SN−1
+ , (3.36)

(ii) or u can be extended to Ω as a continuous function.

We consider the following representation of SN−1
+

SN−1
+ = {x = {x′, xN} = (sin θ σ′, cos θ) : σ′ ∈ SN−2, θ ∈ [0, π/2]}.
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Then the SO(N)- invariant surface measure on SN−1 is dσ = sinN−2 θ dσ′dθ, where dσ′ is the
SO(N−1)- invariant surface measure on SN−2. With this representation, φ1(σ) = φ1(θ) = cos θ,
and the Laplace-Beltrami operator inherits the following representation,

∆′ψ =
1

sinN−2 θ

(

sinN−2 θψθ

)

θ
+

1

sin2 θ
∆∗ψ,

for any ψ ∈ C2(SN−1), where ∆∗ is the Laplace-Beltrami operator on SN−2.

Lemma 3.4 Under the assumptions of Theorem 3.3 there exists C > 0 such that
∫

SN−1
+

v(t, σ)φ1(σ)dσ ≤ C(−t)−1/(q1−1) ∀t < 0. (3.37)

Proof. Steps 1-3 of the proof of Proposition 3.2 are valid in the sense that v is bounded, from
Theorem 2.2, and satisfies

vtt −Nvt + (N − 1)v + ∆′v +H + (v + α)q1 = 0, (3.38)

with H defined in (3.22 ). Uniform bounds and estimates (3.16 )-(3.18 ) hold for v. Therefore
the limit set of the trajectory of {v(t, .)}t≤0 is reduced to 0 since the set of positive solutions of
(3.4 ) is reduced to zero. Since (v + α)q1 = vq1 + q1θv

q1−1α with 0 ≤ θ ≤ 1, we write (3.38 ) as

vtt −Nvt + (N − 1)v + ∆′v + vq1 = −qθvq1−1α−H := H∗, (3.39)

and H∗(σ, t) satisfies (3.23 ) as H does. Set y(t) =

∫

SN−1

+

v(t, σ)φ1(σ)dσ, then

y′′ −Ny′ +

∫

SN−1

+

vq(t, σ)φ1(σ)dσ =

∫

SN−1

+

H∗φ1(σ)dσ. (3.40)

The use of convexity and (3.16 )-(3.18 ) transform (3.40 ) into

y′′ −Ny′ + cyq1 ≤ Cet.

Set ỹ(t) = y(t) +Aet, A > 0 to be fixed, then

ỹ′′ −Nỹ′ + cỹq1 ≤ Cet − (N − 1)Aet + c (ỹq1 − yq1)

≤ Cet − (N − 1)Aet + cq1Ay
q1−1et.

Since y(t) → 0 as t→ −∞, the right-hand side can be made negative for t ≤ T < 0 by takingA
large enough. Because

(ỹ1−q1)′′ −N(ỹ1−q1)′ − c(q − 1) ≥ 0

from the last above inequality, Z = (ỹ1−q1)′ satisfies

Z ′ −NZ ≥ c(q1 − 1) =⇒ Z(t) ≤ c(q1 − 1)

N

(

eN(t−T ) − 1
)

+ eN(t−T )Z(T ) ∀t ≤ T. (3.41)

By taking t ≤ T ∗ < T , the right-hand side of (3.41 ) can be made less than −c/2N(q1−1) = −B,
thus

ỹ1−q1(T ∗) − ỹ1−q1(t) ≤ −B(T ∗ − t) =⇒ ỹ(t) ≤
(

ỹ1−q1(T ∗) +B(T ∗ − t)
)−1/(q1−1)

, (3.42)

which implies (3.37 ). �
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Lemma 3.5 Under the assumptions of Theorem 3.3, there exists C > 0 such that

‖v(t, .)‖L∞ ≤ C(−t)−1/q1. (3.43)

Proof. We proceed by contradiction in assuming that

lim sup
t→−∞

(−t)1/q1ρ(t) = ∞,

where we have set ρ(t) = ‖v(t, .)‖L∞ . By [7, Appendix A.2], there exists η ∈ C∞((−∞, 0]) with
the following properties

η > 0, η′ < 0, lim
t→−∞

η(t) = 0, (3.44)

0 < lim sup
t→−∞

ρ(t)/η(t) <∞, (3.45)

lim
t→−∞

(−t)1/q1η(t) = ∞, (3.46)

(η′/η)′, (η′′/η)′ ∈ L1(−∞, 0), (3.47)

lim
t→−∞

η′(t)/η(t) = lim
t→−∞

η′′(t)/η(t) = 0. (3.48)

The function w∗ = v/η satisfies

w∗
tt −

(

N − 2
η′

η

)

w∗
t +

(

N − 1 +
η′′

η
−N

η′

η

)

w∗ + ∆′w∗ + ηq1−1w∗ q1 − H∗

η
= 0. (3.49)

Since w is uniformly bounded, we deduce from (3.44 )–(3.47 ), the Lp and Schauder estimates,

‖w∗(t, .)‖
C2,γ(SN−1

+
)
+ ‖w∗

t (t, .)‖C1,γ(SN−1
+

)
+ ‖w∗

tt(t, .)‖Cγ(SN−1
+

)

+ sup|h|≤1 |h|−γ ‖w∗
tt(t+ h, .) − w∗

tt(t, .)‖C(SN−1

+
)
,≤M.

(3.50)

with γ ∈ (0, 1), which implies

∫ 0

−∞

∫

SN−1
+

(

w∗ 2
tt +

∣

∣∇′w∗
t

∣

∣

2
)

dσ <∞. (3.51)

The negative trajectory T (v) =
⋃

t≤0{w∗(t, .)} of w∗ is relatively compact in C2(SN−1
+ ). By (3.48

) the limit set of the trajectory Γ =
⋂

τ<0

⋃

t≤τ{w∗(t, .)} is a non-empty connected compact set
of ker(∆′ + λ1I), not reduced to zero because of (3.45 ). Therefore there exists {tn}n∈N tending
to −∞ and β > 0 such that

lim
n→∞

v(tn, σ)

η(tn)
= 2βφ1(σ)

in the C1(SN−1
+ )-topology. If we return to the function u which is a super solution for the Laplace

equation with zero boundary conditions, it implies that, for n large enough,

u(x) ≥ cNη(tn)βP (x, 0) ∀x ∈ Ω \Betn . (3.52)
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Thus, using Theorem 2.1,

cq1

N (η(tn))q1

∫

Ω\Betn

P q1(x, 0)ρ(x)dx ≤
∫

Ω
uq1ρ(x)dx <∞.

Replacing the second integral in Ω\Betn by an integral in a truncated cone C = CS ∩{x : etn ≤
|x| ≤ 1} with vertex 0, we derive

∫

Ω\Betn

P q1(x, 0)ρ(x)dx ≥ c

∫ 1

etn

t−1dt = c(−tn).

Thus, by (3.46 ), uq1 /∈ L(Ω, ρ dx, contradiction. �

We recall the following classical result from perturbation theory of linear second order diffe-
rential equation with constant coefficients [2, Chap 6 §13]

Lemma 3.6 Let ǫ1 and ǫ2 be two continuous functions defined on (−∞, 0] tending to 0 as
t→ −∞ and a, b > 0 such that a2 − 4b ≥ 0. Then there exist two linearly independent solutions
y1 and y2 of

y′′ − (a+ ǫ1(t)y
′(t) + (b+ ǫ2(t))y(t) = 0 on (−∞, 0) (3.53)

such that

lim
t→−∞

y′1(t)

y′1(t)
= c1 and lim

t→−∞

y′2(t)

y′2(t)
= c2, (3.54)

where

c1 =
a+

√
a2 − 4b

2
and c2 =

a−
√
a2 − 4b

2
. (3.55)

Furthermore, if f ∈ C((−∞, 0]) is such that (1 − t)αf(t) is bounded for some α > 0, then there
exists a solution u of

y′′ − (a+ ǫ1(t)y
′(t) + (b+ ǫ2(t))y(t) = f(t) on (−∞, 0), (3.56)

such that (1 − t)αu(t) remains bounded on (−∞, 0].

In the next lemma we improve (3.43 ) step by step, up we reach the optimal estimate.

Lemma 3.7 Under the assumptions of Theorem 3.3, there exists C > 0 such that

‖v(t, .)‖L∞ ≤ C(−t)−1/(q1−1). (3.57)

Proof. Step 1- By Lemma 3.5 the function w1(t, σ) = (−t)1/q1v(t, σ) is uniformly bounded on
(−∞, 1] × SN−1

+ where it satisfies

w1 tt−
(

N +
2

q1t

)

w1 t +

(

N − 1 +
1 + q1
q21t

2
+
N

q1t

)

w1 +∆′w1 +(−t)−1+1/q1wq1

1 − (−t)1/q1H∗ = 0.

(3.58)
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Denote respectively by w̃1 and G̃1 the projections of w1 and (−t)−1+1/q1wq1 − (−t)1/q1H∗ onto
the orthogonal space to ker(∆′ + (N − 1)I) in W 1,2

0 (SN−1
+ ). Then

w̃1 tt −
(

N +
2

q1t

)

w̃1 t +

(

N − 1 +
1 + q1
q21t

2
+
N

q1t

)

w̃1 + ∆′w̃1 + G̃1 = 0 in (−∞, 0) × SN−1
+ .

Then ||G̃1(t, .)||L∞ ≤ c(−t)−1+1/q1 . Since w̃1 is uniformly bounded, the standard regularity
theory for ellipitic equation implies that w̃1 t inherits the same properties. Therefore the function
t 7→ R̃1(t) := ||w̃1(t, .)||L2 satisfies

R̃′′
1 −

(

N +
2

q1t

)

R̃′
1 +

(

N − 1 +
1 + q1
q21t

2
+
N

q1t

)

R̃1 ≥ −c(−t)−1+1/q1 .

It follows from the maximum principle and Lemma 3.6 that R̃1 satisfies

R̃1(t) ≤ C(−t)−1+1/q1 ∀t ≤ −1.

As in the proof of Lemma 3.5, the L2 estimate implies a C2,γ one,

‖w̃1(t, .)‖C2,γ(SN−1

+
)
+ ‖w̃1 t(t, .)‖C1,γ(SN−1

+
)
+ ‖w̃1 tt(t, .)‖Cγ(SN−1

+
)

+ sup|h|≤1 |h|−γ ‖w̃1 tt(t+ h, .) − w̃1 tt(t, .)‖
C(SN−1

+
)
≤M(−t)−1+1/q1 .

(3.59)

Combining (3.59 ) with (3.37 ) yields to

‖v(t, .)‖L∞ ≤ C(−t)−α1 ∀t < 0, (3.60)

with α1 = min{1, 1/(q1 − 1)} = min{1, (N − 1)/2}. If 1 ≥ (N − 1)/2 we have proved (3.57 ).

Step 2- If 1 < (N − 1)/2, we iterate this procedure in setting w2(t, σ) = (−t)v(t, σ) and denote
by w̃2 the projection of w2 onto (ker(∆′ + (N − 1)I))⊥. Mutadis mutandis, it leads to

w̃2 tt −
(

N +
2

t

)

w̃2 t +

(

N − 1 +
2

t2
+
N

t

)

w̃2 + ∆′w̃2 + G̃2 = 0 in (−∞, 0) × SN−1
+ ,

where ||G̃2(t, .)||L∞ ≤ c(−t)1−q1 and finally,

‖v(t, .)‖L∞ ≤ C(−t)−α2 ∀t < 0, (3.61)

with α2 = min{q1, 1/(q1 − 1)} = min{q1, (N − 1)/2}. We continue this procedure up we reach

‖v(t, .)‖L∞ ≤ C(−t)−αk ∀t < 0, (3.62)

with αk = min{qk−1
1 , 1/(q1 − 1)} = (N − 1)/2. �

Remark. It follows from the last step in the proof of (3.57 ) that the projection ṽ of v onto
ker(∆′ + (N − 1)I)⊥ satisfies

‖ṽ(t, .)‖L∞ ≤ C(−t)−(N+1)/2 ∀t < 0, (3.63)
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Proof of Theorem 3.3. Step 1. Existence of a limit. The function w(t, .) = (−t)(N−1)/2v(t, .) is
bounded and satisfies

wtt −
(

N +
N − 1

t

)

wt +

(

N − 1 +
N2 − 1

4t2

)

w + ∆′w

− 1

t

(

wq1 − N(N − 1)

2
w

)

− (−t)(N−1)/2H∗ = 0,

(3.64)

in (−∞, 0) × SN−1
+ . The function w satisfies the same bounds as the ones in (3.50 ). Therefore

multiplying by wt and integrating over SN−1
+ yields to the identity

d

dt

∫

SN−1
+

[

w2
t

2
+

(

N − 1 +
N2 −N

4t2

)

w2

2
− |∇′w|2

2
− 1

t

(

wq1+1

q1 + 1
− N2 −N

4
w2

)]

dσ

=

(

N +
N − 1

t

)∫

SN−1
+

w2
t dσ

+

∫

SN−1

+

[

(−t)(N−1)/2H∗wt −
N2 −N

4t3
w2 +

1

t2

(

wq1+1

q1 + 1
− N2 −N

4
w2

)]

dσ.

(3.65)

With the help of estimates (3.23 ), it implies again

limt→−∞ ||wt(t, .)||L2 = limt→−∞ ||wtt(t, .)||L2 = 0, (3.66)

and clearly the L2 norm can be replaced by the L∞ one. The limit set Γ =
⋂

τ<0

⋃

t≤τ{w(t, .)}
of the negative trajectory T of w(t, .) is therefore a non-empty compact connected subset of
ker(∆′ + (N − 1)I) which means an interval of the form {λφ1 : a ≤ λ ≤ b} where a ≥ 0. Let

z(t) =

∫

SN−1

+

w(t, σ)φ1(σ)dσ and w̃ be the the projection of w onto ker(∆′ + (N − 1)I)⊥. By

(3.63 ) ‖w̃(t, .)‖L∞ ≤ −C/t. We can write the equation satisfied by z under the form

z′′ −
(

N +
N − 1

t

)

z′ +
N2 − 1

4t2
z − 1

t

(

∫

SN−1
+

(w̃ + zφ1)
q1φ1dσ − N(N − 1)

2
z

)

− (−t)(N−1)/2

∫

SN−1

+

H∗φ1dσ = 0.

(3.67)

Set

d =

∫

SN−1

+

φq1+1
1 dσ,

then (3.67 ) becomes

z′′ −
(

N +
N − 1

t

)

z′ − 1

t

(

dzq1 − N(N − 1)

2
z

)

= Ψ, (3.68)

where

Ψ = (−t)(N−1)/2

∫

SN−1

+

H∗φ1dσ − N2 − 1

4t2
z − 1

t

∫

SN−1

+

((w̃ + zφ1)
q1 − zq1φq1

1 )φ1dσ.

17



Because of the estimate on ‖w̃(t, .)‖L∞ and

|(w̃ + zφ1)
q1 − zq1φq1

1 | ≤ q1|w̃|(zφ1)
q1−1, (3.69)

it follows that ‖Ψ(t, .)‖L∞ ≤ Ct−2. By a straightforward modification of the end of the proof of
[4, Corollary 4.2, p 1061] we obtain that z admits a limit ℓ ≥ 0 when t→ −∞, and

dℓq − N(N − 1)

2
ℓ = 0 =⇒ ℓ ∈

{

0,

(

N(N − 1)

2d

)(N−1)/2
}

. (3.70)

If ℓ =

(

N(N − 1)

2d

)(N−1)/2

, we have (3.36 ) with (3.35 ).

Step 2. We claim that if ℓ = 0, the singularity is removable. Let X(t) = ‖w(t, .)‖L2 . As in the
proof of Proposition 3.2-Step 4, we derive from (3.64 ) that for any ǫ > 0 there exists t ≤ tǫ < 0
such that

X ′′ −
(

N +
N − 1

t

)

X ′ +
1

t

(

N(N − 1) − ǫ

2
+
N2 − 1

4t

)

X + C(−t)(N−1)/2et ≥ 0. (3.71)

We perform the following change of unknown, X(t) = (−t)(N−1)/2eNt/2Y (t), then Y satisfies

Y ′′ −
(

N2

4
+

ǫ

2t

)

Y +Ce(2−N)t/2 ≥ 0. (3.72)

By [2, p 126-127] there exist two fundamental solutions of the associated homogeneous linear
equation

Y ′′ −
(

N2

4
+

ǫ

2t

)

Y = 0. (3.73)

with the following asymptotic form

Y1(t) = e−Nt/2(−t)−ǫ/4(1 + ◦(1)) and Y2(t) = eNt/2(−t)ǫ/4(1 + ◦(1)), (3.74)

as t → −∞, and a super solution of (3.72 ) Y0 = Ae(2−N)t/2 for some A > 0. Then Y − Y0 is
a subsolution of (3.73 ) for t ≤ t∗ǫ ≤ tǫ < 0. Because (Y − Y0)+ = ◦(Y1) at −∞, it follows that
Y ≤ Y0 + CY2 for some C > 0. This implies

(

∫

SN−1
+

w2(σ, t)dσ

)1/2

:= X(t) ≤ C(−t)(N−1)/2et ∀t ≤ −1.

Furthermore the L2-norm can be replaced by a L∞ one. Therefore, the solution v of (3.38 )-(3.39
) satisfies the estimate

‖v(t, .)‖L∞ ≤ Cet ∀t ≤ 0. (3.75)

Iterating this estimate as in the proof of Proposition 3.2-Step 4, we finally obtain

‖v(t, .)‖L∞ ≤ C(−t)ǫ/4eNt ∀t ≤ 0 =⇒ ũ(x) ≤ C|x|(ln(1/|x|)ǫ/4. (3.76)
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This implies the claim since ǫ is arbitrary small. �

Remark. The characterization of boundary isolated singularities we have obtained are completed
by the existence of singular solutions which have been obtained by Del Pino, Musso and Pacard
[9]. In particular they prove the following result :

Theorem 1.1 There exists a number pN > (N +1)/(N −1) such that if (N +1)/(N −1) ≤ pN ,
then the following holds : given points ξ1, ξ2, ..., ξk ∈ ∂Ω, there exists a very weak solution u to
problem (1.1 ) such that u ∈ C2(Ω̄ \ {ξ1, ξ2, ..., ξk} and u(x) → ∞ as x → ξj non-tangentially,
for all i = 1, 2, ..., k.

Furthermore the solutions they construct have the singular behaviour we have obtained therein.
They conjecture that pN = (N + 2)/(N − 2).

4 Equation on a spherical domain

4.1 Existence and non-existence

We assume d ≥ 2, denote by Sd the unit sphere in R
d+1 = {x = {x1, ..., xd+1}}. A C2

spherical domain S is said to be starshaped if there exists a spherical harmonic of degree one φ
such that φ > 0 on S and 〈∇′φ, ν〉 ≤ 0 on ∂S, where ∇′ is the covariant gradient on Sd and ν is
the unit outward vector tangent to S on ∂S. In practice we can assume that, up to a rotation,
S ⊂ Sd

+ where Sd
+ := Sd ∩ {x : xd+1 > 0} and φ the first eigenfunction of the Laplace-Beltrami

operator on −∆′ in W 1,2
0 (Sd

+). We recall that the corresponding eigenvalue is d. For ℓ ∈ R and
q > 1, we consider the problem of finding a positive solution to

{

∆′v + ℓv + |v|q−1 v = 0 on S

v = 0 on ∂S,
(4.1)

where S ⊂ Sd is some C2 domain. We first prove the following spherical Pohozaev type formula.

Proposition 4.1 Any C2 solution u of (4.1 ) satisfies

d− 2

2(q + 1)

(

q − d+ 2

d− 2

)
∫

S
|∇′v|2 φdσ − d

2(q + 1)
(ℓ(q − 1) + d)

∫

S
v2φdσ

=
1

2

∫

∂S
|∇′v|2 〈∇′φ, ν〉 dτ.

(4.2)

Proof. If we set
P = 〈∇′φ,∇′v〉∇′v,

then
∫

S
div P dσ =

∫

∂S
〈P, ν〉 dτ.

Thus
div P = 〈∇′φ,∇′v〉∆′v +D2v(∇′φ,∇′v) +D2φ(∇′v,∇′v). (4.3)
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where D2v is the Hessian operator. Now

D2v(∇′φ,∇′v) =
1

2
〈∇′

∣

∣∇′v
∣

∣

2
,∇′φ〉. (4.4)

Furthermore1, there holds classicaly

D2φ+ φ g = 0 (4.5)

where g = (gi,j) is the metric tensor on Sd. Notice that this last relation implies

tr(D2φ) + tr( g)φ = 0,

with tr( g) =
∑

i gi,i = d and tr(D2φ) = ∆′φ, thus we recover the eigenvalue problem. Therefore

div P = −〈∇′φ,∇′v〉
(

ℓv + |v|q−1 v
)

+
1

2
〈∇′

∣

∣∇′v
∣

∣

2
,∇′φ〉 − φ

∣

∣∇′v
∣

∣

2
. (4.6)

Integrating, we derive
∫

S
div P dσ = −

∫

S
〈∇′φ,∇′v〉

(

ℓv + |v|q−1 v
)

dσ +
1

2

∫

S
〈∇′ |∇′v|2 ,∇′φ〉 dσ −

∫

S
φ |∇′v|2 dσ

= A+B + C.

Then

A = −
∫

S
〈∇′φ,∇′v〉

(

ℓv + |v|q−1 v
)

dσ

= −
∫

S
〈∇′φ,∇′

(

ℓ

2
v2 +

1

q + 1
|v|q+1

)

〉 dσ

=

∫

S

(

ℓ

2
v2 +

1

q + 1
|v|q+1

)

∆′φdσ

= −d
∫

S

(

ℓ

2
v2 +

1

q + 1
|v|q+1

)

φdσ,

and

B =
1

2

∫

S
〈∇′ |∇′v|2 ,∇′φ〉 dσ

= −1

2

∫

S
|∇′v|2 ∆′φdσ +

1

2

∫

∂S
|∇′v|2 〈∇′φ, ν〉 dτ

=
d

2

∫

S
φ |∇′v|2 dσ +

1

2

∫

∂S
|∇′v|2 〈∇′φ, ν〉 dτ,

which implies
∫

S
div P dσ

= −
∫

S

(

ℓd

2
v2 +

d

q + 1
|v|q+1

)

φdσ +
d− 2

2

∫

S
φ |∇′v|2 dσ +

1

2

∫

∂S
|∇′v|2 〈∇′φ, ν〉 dτ.

1The authors are grateful to Säıd Ilias for pointing them this identity
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By (4.1 ),
∫

S

(

|v|q+1 + ℓv2
)

φdσ dσ = −
∫

S
vφ∆′v dσ

=

∫

S
〈∇′(vφ),∇′v〉 dσ

=

∫

S
φ |∇′v|2 dσ +

∫

S
v〈∇′φ,∇′v〉 dσ

=

∫

S
φ |∇′v|2 dσ +

d

2

∫

S
v2φdσ,

because v〈∇′φ,∇′v〉 = 2−1〈∇′φ,∇′v2〉 and ∆′φ = −dφ. Therefore

∫

S
|v|q+1 φdσ =

∫

S

∣

∣∇′v
∣

∣

2
φdσ +

(

d

2
− ℓ

)∫

S
v2φdσ.

The next formula follows
∫

S
div P dσ =

(

d− 2

2
− d

q + 1

)∫

S
|∇′v|2 φdσ

−
(

ℓd

2
+
d(d− 2ℓ)

2(q + 1)

)
∫

S
v2φdσ +

1

2

∫

∂S
|∇′v|2 〈∇′φ, ν〉 dτ.

(4.7)

Because both φ and v vanish on ∂S, there holds |∇′v| = |〈∇′v, ν〉| and

∫

∂S
〈∇′φ,∇′v〉〈∇′v, ν〉 dτ − 1

2

∫

∂S

∣

∣∇′v
∣

∣

2 〈∇′φ, ν〉 dτ =
1

2

∫

∂S

∣

∣∇′v
∣

∣

2 〈∇′φ, ν〉 dτ.

The previous identities imply (4.2 ). �

Proposition 4.2 Assume S ⊂ Sd
+.

I- If ℓ ≥ d, any C2 nonnegative solution to (4.1 ) is trivial.

II- If 1 < q < (d+ 2)/(d − 2) and ℓ < d, there exists a positive solution to (4.1 ).

III- If S is starshaped, q ≥ (d+2)/(d− 2), ℓ(q− 1) ≤ −d, with one of the two inequalities strict,
then any C2 solution to (4.1 ) is trivial. If q = (d + 2)/(d − 2), ℓ(q − 1) = −d the same result
holds in the class of nonnegative solutions.

Proof. We recall that φ is positive on Sd
+. If we multiply by φ and integrate, we obtain

(−ℓ+ d)

∫

Sd
+

vφ dσ =

∫

Sd
+

vqφdσ.

Therefore, a necessary condition for existence of positive solutions of (4.1 ) is ℓ < d.
If we assume 1 < q < (d+ 2)/(d − 2) and ℓ < d, we obtain a positive solution by minimizing

J (w) =

∫

Sd
+

(
∣

∣∇′w
∣

∣

2 − ℓw2)dσ
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over the set of

Σ =

{

w ∈W 1,2
0 (Sd

+) :

∫

Sd
+

|w|q+1 dσ = 1

}

.

Clearly the methods fails if q = (d+ 2)/(d − 2).
If S is starshaped, the right-hand side of (4.2 ) is nonpositive, non-identically zero. By Propo-
sition 4.1, if q ≥ (d+ 2)/(d − 2) and ℓ(q − 1) ≥ d, with one of these inequality being strict, the
left-hand side of (4.2 ) is nonnegative while the right-hand one is nonpositive. If q = (d+2)/(d−2),
ℓ(q − 1) = d and u is positive, then the right-hand side of (4.2 ) is positive. �

4.2 Uniqueness

The next results deal with uniqueness of positive solutions to (4.1 ). By a standard adaptation
of Gidas-Ni-Nirenberg moving planes method to Sd, any positive solution of (4.1 ) depends only
on the distance to the north pole. If we set θ = cos−1(xN/|x|) and denote v(x) = v(θ), then

{

v′′ + (d− 1) cot θ v′ + ℓv + vq = 0 in (0, π/2)

v′(0) = 0, v(π/2) = 0.
(4.8)

Proposition 4.3 Assume d ≥ 3, ℓ is any real number and 1 < q < (d + 2)/(d − 2), or d = 2,
ℓ ≤ 2(3− q)/(q+ 3)(q− 1) and q > 1. Then problem (4.8 ) admits at most one positive solution.

Proof. The methods consiste in adapting to our situation the proofs of Kwong and Li [17] dealing
with positive solutions of

{

u′′ +
d− 1

r
u′ + q(r)u+ up = 0 in (0, b)

u′(0) = 0 , u(b) = 0.
(4.9)

Given α > 0 and w(θ) = (sin θ)α v(θ). Then w satisfies

w′′ + (d− 1 − 2α) cot θ w′ +

(

α(d− 1 − α) + ℓ+
α(α + 2 − d)

sin2 θ

)

w +
wq

(sin θ)α(q−1)
= 0 (4.10)

in (0, π/2). Multiplying the equation by (sin θ)β for some β to be fixed, we get

(sin θ)βw′′ + (d− 1 − 2α)(sin θ)β−1 cos θw′ + (sin θ)β−α(q−1)wq +G(θ)w = 0

where
G(θ) = (sin θ)β−2

(

(α(d− 1 − α) + ℓ) sin2 θ + α(α + 2 − d)
)

. (4.11)

If we take α = 2(d− 1)/(q + 3) and β = α(q − 1) = 2(d − 1)(q − 1)/(q + 3) we obtain

(sin θ)βw′′ +
β

2
(sin θ)β−1 cos θw′ + wq +G(θ)w = 0.

Since
d

dθ

(

(sin θ)β
(w′)2

2

)

=

(

(sin θ)βw′′ +
β

2
(sin θ)β−1 cos θw′

)

w′
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and
d

dθ

(

G(θ)
(w′)2

2

)

= G(θ)ww′ +G′(θ)
(w′)2

2

we derive
dE(θ)

dθ
= G′(θ)

(w′)2

2
(4.12)

with

E(θ) = (sin θ)β
(w′)2

2
+
wq+1

q + 1
+G(θ)

w2

2
. (4.13)

Noticing that

G′(θ) =
[

(α(d− 1 − α) + ℓ)β sin2 θ + α(α + 2 − d)(β − 2)
]

(sin θ)β−3 cos θ,

with β−2 = 2[(d−2)q− (d+2)]/(q+3), α+2−d = −[q(d−2)+d−4]. If d ≥ 3, the assumption
1 < q < (d + 2)/(d − 2), implies that α(α + 2 − d)(β − 2) > 0, thus G′ > 0 for θ small enough.
Then we encounter the two possibilities already found in [17] :

(i) either G is increasing on (0, π/2),

(ii) or there exists c ∈ (0, π/2) such that G is increasing on (0, c) and decreasing on (c, π/2).

If d = 2, α(α+ 2− d)(β − 2) = α2(β − 2) = −8α2/(q + 3) < 0. Thus G′ < 0 for θ small enough,
and, if ℓ ≤ 2(3 − q)/q + 3)(q − 1), we have

(iii) G′ < 0 on [0, π/2),

which is also a situation which is treated by [17]. The situations where G is nondeacreasing
on [0, c] and nonincreasing on [c, π/2] for some c ∈ [0, π/2] is the analogue of the Λ condition
in [17], and it implies uniqueness even if G can tend to −∞ at 0, because in all the cases
limθ0→0G(θ)(w′(θ))2 = 0. �

In the case d = 2 another change of variable leads to a new uniqueness result in the proof of
which we adapt some ideas due to Kwong [16] in a singular case, in avoiding his misprints.

Proposition 4.4 Assume d = 2 and 2 < q < 5 and ℓ ≥ −1/4. Then problem (4.8 ) admits at
most one positive solution.

Proof. If w(θ) =
√

sin θ v(θ), then equation (4.10 ) becomes

w′′ +

(

λ+
1

4
+

1

4 sin2 θ

)

w + (sin θ)−(q−1)/2wq = 0 in (0, π/2), (4.14)

with boundary value w(0) = w(π/2) = 0. Because of the singularity at 0, the problem is locally
well-posed if we look for initial conditions at 0 under the form which corresponds to v(0) = c > 0
and v′(0) = 0, namely

w(θ) = c
√

sin θ(1 + ◦(1)) and w′(θ) =
c

2
√

sin θ
(1 + ◦(sin θ)) as θ → 0. (4.15)

We set

F (θ,w) =

(

λ+
1

4 sin2 θ

)

w + (sin θ)−(q−1)/2wq.
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By concavity any positive solution has a unique positive maximum on (0, π/2) and is increasing
and then decreasing. If it exists two different positive solutions v1 and v2 to problem (4.8 ),
they must intersect at least once in (0, π/2) because of superlinearity. The same holds for the
corresponding solutions w1 and w2 of (4.14 ). Let d ∈ (0, π/2) be the largest of such intersections.
It always exists otherwhile it would imply w′

1(π/2) = w′
2(π/2) and w1 = w2. We can assume that

w′
1(π/2) < w′

2(π/2) < 0 and w1 > w2 on (d, π/2], thus w′
1(d) > w′

2(d). Set γ = wi(d) (i = 1, 2).

Step 1. We claim that w1 and w2 cannot be both decreasing on (d, π/2). By the inverse function
theorem, the functions θ 7→ wi(θ) are invertible on (d, π/2), with inverse functions θi(w) with
w ∈ (0, γ) ; furthermore θ1 > θ2. Set w′

i(θ) = Wi(w) on (0, γ). Then 0 ≥ W1(γ) > W2(γ) and
0 > W2(0) > W1(0). Thus there exists α ∈ (0, γ) where W2(α) = W1(α). By the chain rule

dWi

dw
= w′′

i (θ)

(

dwi

dθ

)−1

= −F (θi(w), w)

Wi(w)
=⇒ dW 2

i

dw
= −2F (θi(w), w). (4.16)

Because θ1(w) > θ2(w), −F (θ1(w), w) ≥ −F (θ2(w), w), which implies

dW 2
1

dw
>
dW 2

2

dw
on (0, γ).

Integrating on (0, γ) yields to −W 2
1 (0) > −W 2

2 (0), equivalently (w′
2(π/2))

2 > (w′
1(π/2))

2, a
contradiction.

The two solutions v1 and v2 are such that v1(0) = c1 > v2(0) = c2 > 0. Thus w1 > w2 near
0. If we assume that w1 −w2 has more than one zero in (0, π/2) we denote by d′ the smallest of
these zeros and set γ′ = wi(c

′).

Step 2. We claim that w1 and w2 cannot be both increasing on (0, d′). We use the inverse function
theorem on (0, c′) define θ1 and θ2 as functions of w defined on (0, γ′) and set W̃i(w) = sin θ w′

i(θ)
on (0, γ′). Since

sin θ w′
i(θ) = (sin θ)3/2v′i(θ) +

cos θ

2
√

sin θ
vi(θ), (4.17)

we have W̃1(w) > W̃2(w) near w = 0. The relations 0 < v′1(d
′) < v′2(d

′) and v1(d
′) = v2(d

′) = γ′

combined with (4.17 ) implies 0 < W̃1(γ
′) < W̃2(γ

′). Using again the chain rule

dW̃i

dw
=

d

dθ
(sin θ w′

i)

(

dwi

dθ

)−1

= cos(θi(w)) − (sin2 θi(w))F (θi(w), w)

W̃i(w)
. (4.18)

Because sin2 θF (θ,w) = (ℓ sin2 θ + 4−1)w + (sin θ)(5−q)/2wq and q ≤ 5, there holds

dW̃2

dw
< cos(θ1(w)) − (sin2 θ1(w))F (θ1(w), w)

W̃2(w)
,

which implies
dW̃ 2

2

dw
− cos(θ1(w))W̃2 <

dW̃ 2
1

dw
− cos(θ1(w))W̃1. (4.19)

The fact that W̃i(0) = 0, yields some complications. If we introduce M(w) = W̃2 + W̃1 and
X = W̃ 2

2 − W̃ 2
1 it follows

X ′(w) − cos θ1(w)M(w)X(w) ≤ 0,
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from which we derive

X(w) ≥ e
R γ′

w
cos θ1(s)M(s)dsX(γ′) ∀w ∈ (0, γ′].

Because X(γ′) > 0, X(w) > 0 or equivalently W̃2(w) > W̃1(w) which contradicts W̃2(w) <
W̃1(w) for w small enough. This proves the claim.

End of the proof. As a consequence of Steps 1 and 2, the two solutions v1 and v2 can have
only one intersection, say d, and achieve their maximum in the two separate intervals (0, d)
and (d, π/2). Assume that 0 > w′

1(π/2) > w′
2(π/2). Since there exists only one intersection,

w1(θ) > w2(θ) and w′
1(θ) > w′

2(θ) near 0. Let θi ∈ (0, π/2) be the point where wi achieves its
maximum in (0, π/2) (clearly θ1 < d < θ2) and γi = wi(θi). If γ1 ≥ γ2, it follows from (4.16 ),
with the sign modification induced by the fact that θ1(w) < θ2(w),

dW 2
1

dw
<
dW 2

2

dw
in (0, γ2) =⇒ (w′

1(θ2))
2 − (w′

1(π/2))
2 < −(w′

2(π/2))
2,

since w′
2(θ2) = 0. Which is a contradiction. Thus γ1 < γ2. In this case we procede as in Step 2

and derive, with the same notations,

W̃ 2
2 (w) − W̃ 2

1 (w) ≥ e
R γ1

w
cos θ1(s)M(s)ds W̃ 2

2 (γ1) ∀w ∈ (0, γ1],

a contradiction since the left-hand side is negative near 0. �

4.3 Applications to Emden-Fowler equations

If d = N − 1 (N ≥ 3) and

ℓ = λN,q =
2

q − 1

(

2q

q − 1
−N

)

we consider, for q > 1,

{

∆′v + λN,qv + |v|q−1 v = 0 on SN−1
+

v = 0 on ∂SN−1
+ .

(4.20)

Then Proposition 4.3 and Proposition 4.4 imply straithforwardly the next result.

Corollary 4.5 I- If 1 < q ≤ (N +1)/(N − 1), any C2 nonnegative solution to (4.20 ) is trivial.

II- If q ≥ (N + 1)/(N − 3) any C2 solution to (4.1 ) is trivial.

III- If N ≥ 4 and (N +1)/(N − 1) < q < (N +1)/(N − 3), or N = 3 and 2 < q ≤ 5, there exists
a unique positive solution to (4.1 ).

Remark. In the case q = (N + 1)/(N − 3) = (d+ 2)/(d − 2), (4.20 ) takes the form











∆′v − d(d− 2

4
v + |v|4/(d−2) v = 0 on SN−1

+

v = 0 on ∂SN−1
+

(4.21)
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The operator

v 7→ �v = −∆′v +
d(d− 2)

4
v

is the conformal Laplacian on Sd (d(d−2)/4 is the scalar curvature), the following transformation
holds,

{

∆ṽ + |ṽ|4/(d−2) ṽ = 0 on B1

ṽ = 0 on ∂B1

(4.22)

where Πs is the the south pole stereographic projection from Sd \ {A} onto R
d, and

ṽ(x) =

(

2

1 + |x|2
)2

v(Π−1
s (x)).

Thus (4.21 ) admits no solution by Pohožaev’s identity.

Références

[1] P. Aviles, Local behavior of solutions of some elliptic equations, Comm. Math. Phys.

108 (1987), 177–192.

[2] R. Bellman, Stability Theory of Differential Equations, MacGraw-Hill Book Co, Inc,
New York-Toronto-London (1953).
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