Iterated function systems and applications in image processing
Résumé
This book is organized around the notions of scaling phenomena and scale invariance. The various stochastic models commonly used to describe scaling are introduced: self-similarity, long-range dependence and multi-fractals. These models are compared and related one to the other. Second, they introduce fractional integration, a mathematical tool closely related to the notion of scale invariance. Also, they define stochastic processes with prescribed scaling properties (self-similar processes, locally self-similar processes, fractionally filtered processes, iterated function systems). A number of applications where the scaling paradigm proved fruitful are detailed: image processing, financial and stock market fluctuations, geophysics, scale relativity and fractal time-space.