On Recognizable Languages of Infinite Pictures - Archive ouverte HAL
Article Dans Une Revue International Journal of Foundations of Computer Science Année : 2004

On Recognizable Languages of Infinite Pictures

Olivier Finkel
  • Fonction : Auteur
  • PersonId : 834645

Résumé

In a recent paper, Altenbernd, Thomas and Wöhrle have considered acceptance of languages of infinite two-dimensional words (infinite pictures) by finite tiling systems, with the usual acceptance conditions, such as the Büchi and Muller ones, firstly used for infinite words. The authors asked for comparing the tiling system acceptance with an acceptance of pictures row by row using an automaton model over ordinal words of length $\omega^2$. We give in this paper a solution to this problem, showing that all languages of infinite pictures which are accepted row by row by Büchi or Choueka automata reading words of length $\omega^2$ are Büchi recognized by a finite tiling system, but the converse is not true. We give also the answer to two other questions which were raised by Altenbernd, Thomas and Wöhrle, showing that it is undecidable whether a Büchi recognizable language of infinite pictures is E-recognizable (respectively, A-recognizable).
Fichier principal
Vignette du fichier
rec-pictures-+erratum.pdf (226.66 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00355793 , version 1 (24-01-2009)

Identifiants

Citer

Olivier Finkel. On Recognizable Languages of Infinite Pictures. International Journal of Foundations of Computer Science, 2004, 15 (6), pp.823-840. ⟨hal-00355793⟩
151 Consultations
106 Téléchargements

Altmetric

Partager

More