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ABSTRACT

In a recent paper, Altenbernd, Thomas and Wöhrle have considered acceptance of
languages of infinite two-dimensional words (infinite pictures) by finite tiling systems,
with the usual acceptance conditions, such as the Büchi and Muller ones, firstly used for
infinite words. The authors asked for comparing the tiling system acceptance with an
acceptance of pictures row by row using an automaton model over ordinal words of length
ω

2. We give in this paper a solution to this problem, showing that all languages of infinite
pictures which are accepted row by row by Büchi or Choueka automata reading words of

length ω
2 are Büchi recognized by a finite tiling system, but the converse is not true. We

give also the answer to two other questions which were raised by Altenbernd, Thomas
and Wöhrle, showing that it is undecidable whether a Büchi recognizable language of
infinite pictures is E-recognizable (respectively, A-recognizable).

Keywords: Languages of infinite pictures; tiling systems; automata reading ordinal
words of length ω

2; topological complexity; Borel and analytic sets; E-recognizable;
A-recognizable; decision problems.

1. Introduction

In a recent paper [1], Altenbernd, Thomas and Wöhrle have considered accep-

tance of languages of infinite two-dimensional words (infinite pictures) by finite

tiling systems, with the usual acceptance conditions, such as the Büchi and Muller

ones, firstly used for acceptance of infinite words. This way they extended the clas-

sical theory of recognizable languages of finite pictures, [13], to the case of infinite

pictures.

On the other hand automata reading ordinal words have been first considered by

Büchi in order to study the decidability of the monadic second order theory on

countable ordinals. In particular he defined automata reading words of length ω2,

[5, 6]. Another model of automaton reading words of length ω2 has been studied by
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Choueka in [7] and it has been shown by Bedon that these two models are equivalent

[2, 3]. They accept the so called regular ω2-languages which can also be defined by

generalized regular expressions, see also the work of Wojciechowski [26, 27].

In [1] the authors asked for comparing the tiling system acceptance with an ac-

ceptance of pictures row by row using an automaton model over ordinal words of

length ω2.

We give in this paper a solution to this problem, showing that the class of languages

of infinite pictures which are accepted by Büchi automata reading words of length

ω2 is strictly included in the class of languages of infinite pictures which are Büchi-

recognized by some finite tiling system.

Another way to compare these two classes is to compare the topological complexity

of languages in each of them, with regard to the Borel and projective hierarchies.

We then determine the topological complexity of Büchi-recognized languages of in-

finite pictures. This way we show that Büchi tiling systems have a much greater

accepting power than automata over ordinal words of length ω2.

Using topological arguments, we give also the answer to two questions raised in [1],

showing that it is undecidable whether a Büchi recognizable language of infinite

pictures is E-recognizable (respectively, A-recognizable). For that purpose we use a

very similar technique as in a recent paper where we have proved several undecid-

ability results for infinitary rational relations [12].

The paper is organized as follows. In section 2 we recall basic definitions for pictures

and tiling systems. Büchi automata reading words of length ω or ω2 are introduced

in section 3. We compare the two modes of acceptance in section 4. Undecidability

results are proved in section 5.

2. Tiling Systems

Let Σ be a finite alphabet and # be a letter not in Σ and let Σ̂ = Σ ∪ {#}.

If m and n are two integers > 0 or if m = n = 0, a picture of size (m,n) over Σ

is a function p from {0, 1, . . . ,m+ 1} × {0, 1, . . . , n+ 1} into Σ̂ such that p(0, i) =

p(m+ 1, i) = # for all integers i ∈ {0, 1, . . . , n+1} and p(i, 0) = p(i, n+ 1) = # for

all integers i ∈ {0, 1, . . . ,m+ 1} and p(i, j) ∈ Σ if i /∈ {0,m+ 1} and j /∈ {0, n+ 1}.

The empty picture is the only picture of size (0, 0) and is denoted by λ. Pictures of

size (n, 0) or (0, n), for n > 0, are not defined. Σ⋆,⋆ is the set of pictures over Σ. A

picture language L is a subset of Σ⋆,⋆.

An ω-picture over Σ is a function p from ω×ω into Σ̂ such that p(i, 0) = p(0, i) = #

for all i ≥ 0 and p(i, j) ∈ Σ for i, j > 0. Σω,ω is the set of ω-pictures over Σ. An

ω-picture language L is a subset of Σω,ω.

For Σ a finite alphabet we call Σω2

the set of functions from ω × ω into Σ. So the

set Σω,ω of ω-pictures over Σ is a strict subset of Σ̂ω2

.

We shall say that, for each integer j ≥ 1, the jth row of an ω-picture p ∈ Σω,ω is the

infinite word p(1, j).p(2, j).p(3, j) . . . over Σ and the jth column of p is the infinite

word p(j, 1).p(j, 2).p(j, 3) . . . over Σ.
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As usual, one can imagine that, for integers j > k ≥ 1, the jth column of p is on

the right of the kth column of p and that the jth row of p is “above” the kth row of

p. This representation will be used in the sequel.

We introduce now tiling systems as in the paper [1].

A tiling system is a tuple A=(Q,Σ,∆), where Q is a finite set of states, Σ is a finite

alphabet, ∆ ⊆ (Σ̂ ×Q)4 is a finite set of tiles.

A Büchi tiling system is a pair (A,F ) where A=(Q,Σ,∆) is a tiling system and

F ⊆ Q is the set of accepting states.

A Muller tiling system is a pair (A,F) where A=(Q,Σ,∆) is a tiling system and

F⊆ 2Q is the set of accepting sets of states.

Tiles are denoted by

(

(a3, q3) (a4, q4)
(a1, q1) (a2, q2)

)

with ai ∈ Σ̂ and qi ∈ Q,

and in general, over an alphabet Γ, by

(

b3 b4
b1 b2

)

with bi ∈ Γ.

We will indicate a combination of tiles by:

(

b3 b4
b1 b2

)

◦

(

b′3 b′4
b′1 b′2

)

=

(

(b3, b
′
3) (b4, b

′
4)

(b1, b
′
1) (b2, b

′
2)

)

A run of a tiling system A=(Q,Σ,∆) over a (finite) picture p of size (m,n) over Σ

is a mapping ρ from {0, 1, . . . ,m + 1} × {0, 1, . . . , n + 1} into Q such that for all

(i, j) ∈ {0, 1, . . . ,m} × {0, 1, . . . , n} with p(i, j) = ai,j and ρ(i, j) = qi,j we have

(

ai,j+1 ai+1,j+1

ai,j ai+1,j

)

◦

(

qi,j+1 qi+1,j+1

qi,j qi+1,j

)

∈ ∆.

A run of a tiling system A=(Q,Σ,∆) over an ω-picture p ∈ Σω,ω is a mapping ρ

from ω×ω into Q such that for all (i, j) ∈ ω×ω with p(i, j) = ai,j and ρ(i, j) = qi,j
we have

(

ai,j+1 ai+1,j+1

ai,j ai+1,j

)

◦

(

qi,j+1 qi+1,j+1

qi,j qi+1,j

)

∈ ∆.

We now recall acceptance of finite or infinite pictures by tiling systems:

Definition 2.1 Let A=(Q,Σ,∆) be a tiling system, F ⊆ Q and F⊆ 2Q.

• The picture language recognized by A is the set of pictures p ∈ Σ⋆,⋆ such that

there is some run ρ of A on p.

• The ω-picture language A-recognized (respectively, E-recognized, Büchi-recognized)

by (A,F ) is the set of ω-pictures p ∈ Σω,ω such that there is some run ρ of A

on p and ρ(v) ∈ F for all (respectively, for at least one, for infinitely many)

v ∈ ω2.

• The ω-picture language Muller-recognized by (A,F) is the set of ω-pictures

p ∈ Σω,ω such that there is some run ρ of A on p and Inf(ρ) ∈ F where

Inf(ρ) is the set of states occurring infinitely often in ρ.
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As stated in [1], an ω-picture language L ⊆ Σω,ω is recognized by a Büchi tiling

system if and only if it is recognized by a Muller tiling system.

We shall denote TS(Σω,ω) the class of languages L ⊆ Σω,ω which are recognized by

some Büchi (or Muller) tiling system.

3. Büchi Automata

We shall assume the reader to be familiar with the elementary theory of count-

able ordinals, which may be found in [20]. In fact we shall only need in this section

to consider ordinals smaller than ω2 + 1.

Let Σ be a finite alphabet, and α be a countable ordinal. An α-word x (word of

length α) over the alphabet Σ is an α-sequence (sequence of length α) of letters in

Σ. It will be denoted by (x(i))0≤i<α = x(0).x(1).x(2) . . . x(i) . . . , where for all i,

0 ≤ i < α, x(i) is a letter in Σ.

For an ordinal α ≥ ω, the set of α-words over Σ will be denoted by Σα. An

α-language over Σ is a subset of Σα.

We assume now that the reader has some familiarity with the notion of Büchi and

Muller automata reading infinite words, [24, 23, 19].

Definition 3.1 A Büchi automaton is a 5-tuple A= (Σ, Q, q0,∆, F ) where Q is a

finite set of states, q0 ∈ Q is the initial state, ∆ ⊆ Q × Σ × Q is the transition

relation, and F ⊆ Q is the set of final states.

A run of A on the ω-word σ ∈ Σω is an ω-sequence x ∈ Qω such that x(0) = q0
and (x(i), σ(i), x(i + 1)) ∈ ∆ for i ≥ 0.

The run is called successful if Inf(x) ∩ F 6= ∅, where Inf(x) is the set of elements

of Q which appear infinitely often in the ω-sequence x.

An ω-word σ ∈ Σω is accepted by A if there exists a successful run of A on σ.

Lω(A)={σ ∈ Σω | A accepts σ} is the ω-language recognized by A.

A Muller automaton is defined in a similar way except that F is replaced by a set

F ⊆ 2Q of accepting sets of states and that a run x ∈ Qω on an ω-word σ ∈ Σω is

said to be successful iff Inf(x) ∈ F .

Büchi and Muller automata accept the same class of ω-languages: the class of

regular ω-languages which is the ω-Kleene closure of the class of regular finitary

languages. It follows from Mac Naughton’s Theorem that each regular ω-language

is also accepted by a deterministic Muller automaton, [24, 23, 19].

In order to define an automaton reading ordinal words of length ≥ ω, we must add

to the automaton a transition relation for limit steps: after the reading of a word

which length is a limit ordinal, the state of the automaton will depend on the set

of states which cofinally appeared during the run of the automaton, [6, 14, 2]. We

shall give the following definition in the general case of automata reading ordinal

words but in fact we shall only need in the sequel the notion of automata reading

words of length ω or ω2.

Definition 3.2 An ordinal Büchi automaton is a sextuple A=(Σ, Q, q0,∆, γ, F )

where: Σ is a finite alphabet, Q is a finite set of states, q0 ∈ Q is the initial state,
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∆ ⊂ Q × Σ × Q is the transition relation, and γ ⊂ P (Q) × Q is the transition

relation for limit steps.

Σ, Q, q0,∆ and F keep the same meaning as before, the meaning of γ is given by

the following definition:

Definition 3.3 A run of the ordinal Büchi automaton A=(Σ, Q, q0,∆, γ, F ), read-

ing the word σ ∈ Σα, is an (α + 1)-sequence of states x defined by: x(0) = q0 and

for i < α, (x(i), σ(i), x(i + 1)) ∈ ∆ and for a limit ordinal i: (Inf(x, i), x(i)) ∈ γ,

where

Inf(x, i) = {q ∈ Q | ∀µ < i,∃ν < i such that µ < ν and x(ν) = q}

is the set of states which cofinally appear during the reading of the i first letters of

σ.

A run x of the automaton A over the word σ is called successful if x(α) ∈ F . A

word σ ∈ Σα is accepted by A if there exists a successful run of A over σ. We

denote Lα(A) the set of words of length α which are accepted by A.

In particular the above definition provides a notion of automata reading words of

length ω2. Later Choueka defined another class of automata reading words of length

ω2 (and even ωn for an integer n ≥ 2) now called Choueka automata [7]. Bedon

proved that these two classes of automata accept the same class of ω2-languages, the

class of regular ω2-languages which can be also defined by ω2-regular expressions

[2, 3].

Remark 3.4 When we consider only finite words, the language accepted by an

ordinal Büchi automaton is a rational language. And an ω-language is accepted by

an ordinal Büchi automaton if and only if it is accepted by a Muller automaton

hence also by a Büchi automaton.

We shall use in the sequel another way of generating regular ω2-languages which is

given by the following proposition. We shall reprove this result although it already

appeared in [14] and has been also proved in [10].

Proposition 3.5 An ω2-language L ⊆ Σω2

is regular iff it is obtained from a

regular ω-language R ⊆ Γω by substituting in every ω-word σ ∈ R a regular

ω-language La ⊆ Σω to each letter a ∈ Γ.

Proof. Let A=(Σ, Q, q0,∆, γ, F ) be an ordinal Büchi automaton, and let

Lω2(A) be the ω2-language recognized by A.

Consider the reading of a word σ ∈ Σω2

by A: After the reading of the first ω

letters, A is in state x(ω), after the reading of ω.2 letters, A is in state x(ω.2) and

so on.

For qi ∈ Q, qj ∈ Q and E ⊆ Q, we denote by L(qi, qj , E) the ω-language of words

u ∈ Σω such that there exists a reading of u by A, beginning in state qi, ending in

state qj after the reading of u, and going through the set of states E (including qi
and qj).

We easily see that these ω-languages are recognized by Muller automata therefore

also by Büchi automata.
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Consider now the new alphabet:

Γ = Q×Q× P (Q) = {(qi, qj , E) | qi ∈ Q, qj ∈ Q,E ⊆ Q}

and let R ⊆ Γω containing an ω-word σ ∈ Γω if and only if σ satisfies the two

following properties:

(1). The first letter of σ is in the form (q0, q, E) and each letter (qi, qj , E) is followed

by a letter (qj , q, G) with q ∈ Q,G ⊆ Q.

(2). The set

X = {q ∈ Q | some letter (qi, qj , G) appears infinitely often in σ and q ∈ G}

satisfies (X, qf ) ∈ γ for some qf ∈ F .

R is a regular ω-language and if we substitute in R the ω-language L(qi, qj , E) to

each letter (qi, qj , E), we obtain the ω2-language recognized by A, i.e. Lω2(A).

We have then proved one implication of Proposition 3.5. In fact we shall only need

in the sequel this implication.

We just mention that the converse can be easily proved by using regular expressions

defining regular ω-languages and regular ω2-languages. 2

We have now to define precisely the acceptance of infinite pictures row by row by

an automaton model over ordinal words of length ω2.

To an infinite picture p ∈ Σω,ω we associate an ω2-word p̄ ∈ Σω2

which is defined

by p̄(ω.n+m) = p(m+ 1, n+ 1) for all integers n,m ≥ 0.

This can be extended to languages of infinite pictures: for L ⊆ Σω,ω we denote

L̄ = {p̄ | p ∈ L} so L̄ is an ω2-language over Σ.

We can now set the following definition:

Definition 3.6 A language of infinite pictures L ⊆ Σω,ω is accepted row by row by

an ordinal Büchi automaton if and only if the ω2-language L̄ is regular.

We shall denote BA(Σω,ω) the class of languages L ⊆ Σω,ω such that L̄ is regular,

i.e. is accepted by an ordinal Büchi automaton.

Remark 3.7 We have defined the ω2-word p̄ without the letters # appearing in the

infinite picture p. It is easy to see that this does not change the notion of acceptance

of a language of infinite pictures row by row by an ordinal Büchi automaton.

4. Comparison of The Two Modes of Acceptance

We can now state our main result.

Theorem 4.1 Every language of infinite pictures which is accepted row by row by

an ordinal Büchi automaton is Büchi-recognized by some finite tiling system, but

the converse is not true.

We are going to split the proof of Theorem 4.1 into the two following lemmas.
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Lemma 4.2 Every language of infinite pictures which is accepted row by row by an

ordinal Büchi automaton is Büchi-recognized by some finite tiling system.

Proof. Let L ⊆ Σω,ω be a language of infinite pictures which is accepted row

by row by an ordinal Büchi automaton, i.e. such that the ω2-language L̄ is regular.

By Proposition 3.5, the ω2-language L̄ is obtained from a regular ω-language R ⊆

Γω, where Γ = {a1, a2, . . . , an} is a finite alphabet, by substituting in every ω-word

σ ∈ R a regular ω-language Ri ⊆ Σω to each letter ai ∈ Γ.

Let A= (Γ, Q, q0,∆, F ) be a Büchi automaton accepting the regular ω-language R

and, for each integer i ∈ [1;n], let Ai= (Σ, Qi, qi
0,∆

i, F i) be a Büchi automaton

accepting the regular ω-language Ri. We assume, without loss of generality, that

for all integers i, j ∈ [1;n], Qi ∩Qj = ∅ and Qi ∩Q = ∅.

We shall describe the behaviour of a tiling system T =(K,Σ,∆T ) which will accept

infinite pictures p ∈ L with a Muller acceptance condition.

A run ρ of T on an ω-picture p ∈ L will guess, for each integer j ≥ 1, an integer

ij ∈ {1, 2, . . . , n} such that the jth row pj of p is in Rij
. It will then check that for

all j ≥ 1 the ω-word pj is in Rij
and that the ω-word ai1 .ai2 . . . aij

. . . is in R.

We are going now to describe informally a run ρ of T over an infinite picture

p ∈ Σω,ω.

Each state of T , i.e. each element of K, will consist of five components.

The first component of a state of T is an integer ij ∈ {1, 2, . . . , n}.

It will be used to guess that the ω-word pj = p(1, j).p(2, j).p(3, j) . . ., forming the

jth row of the picture p, is in the regular ω-language Rij
.

This first component will be constant on every row of the run ρ and will be propa-

gated horizontally.

The second component is an element of ∪1≤i≤nQ
i.

If on the jth row the first component of the state is equal to ij then the second

component on this row will be in Qij . It is used to simulate (by horizontal propa-

gation) a run αj of the Büchi automaton Aij on the ω-word pj forming the jth row

of p.

So the projection of ρj = ρ(1, j).ρ(2, j) . . . on the second component of states will

be equal to αj .

In order to check that, for all integers j ≥ 1, the ω-word pj is in the regular ω-

language Rij
, T has to check that each run αj is successful, i.e. that Inf(αj)∩F ij 6=

∅, or equivalently that some state of F ij appears infinitely often in the second

component (of the state) on the jth row.
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This can be done in the following way. One can imagine an ant which moves on

the picture p, but only horizontally from the left to the right or vertically. The

movement of the ant will be indicated by the third component of the state which

will be an element of {B, a, ad}.

Letters a, ad will represent the trajectory of the ant and the blank symbol B will be

used elsewhere. The letter ad will be only used when the ant goes down vertically

on the picture.

We shall need also the fourth component of the state of T which will be an element

of {B, ⋆, ⋆1}.

The walk of the ant begins at the intersection of the first row and the first column

of p, i.e. at the place of the letter p(1, 1) of p.

At the beginning of this walk, the ant moves horizontally to the right on the first

row (this way is marked by an a on the third component of the state) until it meets

an element q1 ∈ F i1 on the second component of the state.

There is also a mark ⋆ on the first row which is propagated to the right following

the movement of the ant.

If the ant meets an element q1 ∈ F i1 on the second component of the state, then

the mark ⋆ is transferred on the second row just above it (on the same column) but

with an indice 1, so it becomes ⋆1.

This mark ⋆1 will be next forwarded horizontally to the right but without the indice

1.

The ant then goes down vertically until it reaches the first row. In that special

beginning of its walk, it is already on the first row!

Next the ant moves again to the right on the first row, until it meets an element

q2 ∈ F i1 on the second component of the state. At that point it goes up on the

second row (which is marked by ⋆ on the fourth component) and moves to the right

on this row until it meets an element q3 ∈ F i2 on the second component of the

state.

At that point the mark ⋆ is transferred on the third row just above it (on the same

column) but with an indice 1, so it becomes ⋆1. This mark ⋆1 will be next forwarded

horizontally to the right but without the indice 1.

The mark ⋆ is now on the third row and it indicates that the ant will have to check

successively the three first rows at next ascending moves.

The ant then goes down vertically until it reaches the first row. These movements

will be indicated by the letter ad on the third component of the state. Once on

the first row its trajectory is again marked by the letter a. It moves to the right,

looking for some state of F i1 on the first row, next goes up, moves to the right,

looking for some state of F i2 on the second row, next goes up, moves to the right,

again looking for some state of F i3 on the third row.

This way it checks successively the first row, then the second row, and the third row

8



(marked with ⋆), looking each time for an element of F ij on the jth row. When it

meets an element q6 ∈ F i3 on the second component on the third row, it transfers

the mark ⋆ (with an indice, so it becomes ⋆1) just above it. This mark ⋆ will be

next forwarded horizontally to the right, without the indice 1.

The mark ⋆ is now on the fourth row and it indicates that the ant will have to check

successively the four first rows at next ascending moves.

The ant then goes down vertically until it reaches the first row and so on . . .

We can see that if the mark ⋆1 appears infinitely often, it appears one time on each

row, and this means that the ant has successively checked the first row, then the

two first rows, then the three first rows, . . . , then the n first rows, . . . , looking each

time for an element of F ij on the jth row.

This implies that, for a given jth row, the ant has checked that some element of Qij

appears infinitely often on the second component of the state, hence the ω-word

pj = p(1, j).p(2, j).p(3, j) . . . is in the regular ω-language Rij
.

Conversely if for all integers j ≥ 1 the ω-word pj is in Rij
, then there are some

successful runs αj of the Büchi automata Aij on the ω-words pj such that the above

defined movements of the ant make the mark ⋆1 to appear infinitely often.

Notice that the blank symbol B appears on the fourth component of the state

whenever neither ⋆ nor ⋆1 is used as explained above.

T has now to check that the integers ij , j ≥ 1, are such that the ω-word ai1 .ai2 . . . aij
. . .

is in R. The fifth component of states of K is used for that purpose. On the first

column this fifth component is an element of Q and is used to simulate, by vertical

propagation, a run α of A on the ω-word ai1 .ai2 . . . aij
. . . .

This means that the projection of ρ(1, 1).ρ(1, 2).ρ(1, 3) . . . on this fifth component

will be equal to α.

On the other columns the fifth component will be simply the blank symbol B.

We have seen that the set of states of the tiling system T will be:

K = {1, 2, . . . , n} × ∪1≤i≤nQ
i × {B, a, ad} × {B, ⋆, ⋆1} × ({B} ∪Q)

and one can define a set of tiles ∆T such that corresponding runs of the tiling

system T =(K,Σ,∆T ) are described informally as above.

A run ρ will be successful if and only if the mark ⋆1 appears infinitely often on the

fourth component of ρ(v) and some state q ∈ F appears infinitely often on the fifth

component of ρ(v), for v ∈ ω2.

This acceptance condition may be written as a Muller condition. As stated in [1]

any language of ω-pictures which is Muller recognizable by a tiling system is also

Büchi recognizable by a tiling system. 2

Lemma 4.3 There exists a Büchi-recognizable language of infinite pictures which

is not accepted row by row by any ordinal Büchi automaton.
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Proof. The class of languages of infinite pictures which are Büchi-recognizable

by tiling systems is not closed under complement, [1]. There exists a language T ⊆

Σω,ω of infinite pictures, (where Σ is a finite alphabet), which is Büchi-recognizable

by a tiling system but such that its complement is not Büchi-recognizable by any

tiling system.

Then T̄ cannot be a regular ω2-language. Indeed otherwise its complement would

be also a regular ω2-language because the class of regular ω2-languages is closed

under complement, [2, 3]. The preceding proof would imply that the complement

of T would be also Büchi-recognizable by a tiling system, towards a contradiction.

2

Theorem 4.1 expresses that the class BA(Σω,ω) is strictly included in the class

TS(Σω,ω). We shall see in the next section that one cannot decide whether a

language L ∈ TS(Σω,ω) is in BA(Σω,ω).

We are going now to compare the topological complexity of languages in the classes

TS(Σω,ω) and BA(Σω,ω).

From now on we shall assume that the reader is familiar with basic notions of

topology and with the Borel and projective hierarchies on a space Σω, (where Σ is

a finite alphabet having at least two letters), equipped with the Cantor topology,

see for example [17, 23, 19, 15].

We recall that a subset of Σω is a Borel set of rank α, for a countable ordinal α, iff

it is in Σ0

α ∪ Π0

α but not in
⋃

γ<α(Σ0

γ ∪Π0

γ).

Recall also the notion of completeness with regard to reduction by continuous func-

tions. For a countable ordinal α ≥ 1, a set F ⊆ Σω is said to be a Σ0

α (respectively,

Π0

α, Σ1

1
)-complete set iff for any set E ⊆ Γω (with Γ a finite alphabet): E ∈ Σ0

α

(respectively, E ∈ Π0

α, E ∈ Σ1

1
) iff there exists a continuous function f : Γω → Σω

such that E = f−1(F ).

For Γ a finite alphabet having at least two letters, the set Γω×ω of functions from

ω×ω into Γ is usually equipped with the product topology of the discrete topology

on Γ. This topology may be defined by the following distance d. Let x and y in

Γω×ω such that x 6= y, then

d(x, y) =
1

2n
where

n = min{p ≥ 0 | ∃(i, j) x(i, j) 6= y(i, j) and i+ j = p}.

Then the topological space Γω×ω is homeomorphic to the topological space Γω,

equipped with the Cantor topology. Borel subsets of Γω×ω are defined from open

subsets as in the case of the topological space Γω. Analytic subsets of Γω×ω are

obtained as projections on Γω×ω of Borel subsets of the product space Γω×ω × Γω.

The set Σω,ω of ω-pictures over Σ, viewed as a topological subspace of Σ̂ω×ω, is

easily seen to be homeomorphic to the topological space Σω×ω, via the mapping

ϕ : Σω,ω → Σω×ω defined by ϕ(p)(i, j) = p(i+1, j+1) for all p ∈ Σω,ω and i, j ∈ ω.
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The topological complexity of languages of infinite pictures, accepted row by row

by ordinal Büchi automata, is given by the following result which is stated in [9].

Proposition 4.4 ([9]) Let L ⊆ Σω,ω be a language of infinite pictures which is

accepted row by row by an ordinal Büchi automaton. Then L is a Borel set of rank

smaller than or equal to 5.

This result can be easily proved, using Proposition 3.5 and the fact that every

regular ω-language R ⊆ Γω is a boolean combination of arithmetical Π2-sets, hence

a ∆3-set, so is definable in first order arithmetic by some first order Σ3-sentence

and also by some first order Π3-sentence. One can then show that every regular ω2-

language is defined in first order arithmetic by some first order Σ5-sentence hence

is a Borel set of rank smaller than or equal to 5.

On the other side it has been proved in [1] that there exist some Σ1

1
-complete, hence

non Borel, Büchi recognizable language of ω-pictures. The two following lemmas

will provide an alternative proof of this result and will be also useful to determine

the Borel ranks of languages in TS(Σω,ω).

For an ω-language L ⊆ Σω we denote LB the language of infinite pictures p ∈ Σω,ω

such that the first row of p is in L and the other rows are labelled with the letter

B which is assumed to belong to Σ.

Lemma 4.5 If L ⊆ Σω is accepted by some Turing machine with a Büchi accep-

tance condition, then LB is Büchi recognizable by a finite tiling system.

Proof. Let L ⊆ Σω be an ω-language accepted by some Turing machine T

with a Büchi acceptance condition.

We assume that the Turing machine has a single semi-infinite tape, with one reading

head which may also write on the tape. Q is the set of states of T , q0 is the initial

state and F ⊆ Q is the set of accepting states. The input alphabet of T is Σ and

its working alphabet is Γ ⊇ Σ.

It has been proved by Cohen and Gold that one can consider only such restricted

model of Turing machine [8].

An instantaneous configuration of T is given by an infinite word u.q.v where u ∈ Γ⋆,

q ∈ Q, v ∈ Γω, and the first letter of v is the one scanned by the head of T .

The initial configuration of T reading the infinite word σ ∈ Σω is q0.σ.

A computation of T reading σ ∈ Σω is an infinite sequence of configurations

α0, α1, α2, . . . , αi, . . . , where α0 = q0.σ is the initial configuration and for all

integers i ≥ 0, αi = ui.qi.vi is the (i+ 1)th configuration.

The computation is successful if and only if there exists a final state qf ∈ F and

infinitely many integers i such that qi = qf .

We can now use a similar reasoning as in the classical proof of the undecidability

of the emptiness problem for recognizable languages of finite pictures, [13, p. 34].

We can define a set of tiles ∆ in such a way that for σ ∈ Σω, a run ρ of the tiling

11



system T =(Σ,Γ ∪Q,∆, F ) over the infinite picture σB satifies:

for each integer i ≥ 0 ρ(0, i).ρ(1, i).ρ(2, i) . . . = αi = ui.qi.vi

i.e. ρ(0, i).ρ(1, i).ρ(2, i) . . . is the (i + 1)th configuration of T reading the ω-word

σ ∈ Σω.

Thus the Büchi tiling system (T ,F ) recognizes the language LB. 2

The following lemma is easy to prove. Details are left to the reader.

Lemma 4.6 Let α be a countable ordinal ≥ 2. If L ⊆ Σω is Σ0

α-complete (re-

spectively, Π0

α-complete, Σ1

1
-complete), then LB is Σ0

α-complete (respectively, Π0

α-

complete, Σ1

1
-complete).

In particular, for each alphabet Σ having at least two letters, we get some Σ1

1
-

complete language of ω-pictures in the form LB because it is well known that there

exist some Σ1

1
-complete ω-languages L ⊆ Σω accepted by some Büchi (or Muller)

Turing machine.

Notice that the Σ1

1
-complete Büchi recognizable language T2 ⊆ {0, 1, $}ω,ω of all

ω-pictures encoding an ω-tree with an infinite path given in [1] is also in that form.

To determine the ranks of Borel languages of ω-pictures we shall need to consider

the first non-recursive ordinal which is called the Church Kleene ordinal and is

usually denoted by ωCK
1 [18].

Proposition 4.7 Let Σ be a finite alphabet having at least two letters.

(a) If L ⊆ Σω,ω is Büchi recognizable by a finite tiling system and is a Borel set

of rank α, then α is smaller than ωCK
1 .

(b) For every non null countable ordinal α < ωCK
1 , there exists some language of

infinite pictures L ⊆ Σω,ω which is Büchi recognizable by a finite tiling system

and is a Borel set of rank α.

Proof.

(a). It was proved in [1] that every language L of infinite pictures which is Büchi

recognizable by a finite tiling system is definable by an existential second order

formula of arithmetic. It is well known that this implies that L is a Σ1
1-set (lightface)

and that if moreover L is a Borel set then its Borel rank is smaller than ωCK
1 , see

[18].

(b). For α = 1 it is well known that a Σ0

1
-complete set is simply an open but non

closed set and that a Π0

1
-complete set is simply a closed but non open set. For

example O = {p ∈ Σω,ω | ∃i ≥ 1, ∃j ≥ 1 p(i, j) = B} is a Σ0

1
-complete subset of

Σω,ω, and C = {p ∈ Σω,ω | ∀i ≥ 1, ∀j ≥ 1 p(i, j) = B} is a Π0

1
-complete subset of

Σω,ω. These two languages are in TS(Σω,ω).

On the other hand it is well known that, for every non null countable ordinal

α < ωCK
1 , there exists some Σ0

α-complete Sα and some Π0

α-complete Pα, subsets

of Σω, which are effective, i.e. which are in the class of Σ1
1 (lightface) subsets of

Σω accepted by some Turing machine with a Büchi acceptance condition, [18, 23].
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Then by Lemma 4.6 the language (Sα)B ⊆ Σω,ω (respectively, (Pα)B ⊆ Σω,ω) is

Σ0

α-complete (respectively, Π0

α-complete) and by Lemma 4.5 these languages are in

TS(Σω,ω). 2

In conclusion of this section, these results show that Büchi tiling systems have a

much greater accepting power than automata reading ω2-words for acceptance of

languages of infinite pictures.

5. Decision Problems

In a recent paper we have proved several undecidability results for infinitary

rational relations [12]. These results were deduced from an extreme separation re-

sult, proved using the undecidability of the universality problem for finitary rational

relations and the existence of a Σ1

1
-complete infinitary rational relation stated in

another paper [11].

We shall use in this section a very similar technique, using this time the undecid-

ability of the emptiness problem for languages of finite pictures and the existence

of a Σ1

1
-complete language of ω-pictures. In a similar way we shall see that this

implies several undecidability results.

Proposition 5.1 Let Γ = {0, 1,#}, then there exists a family F of Büchi-recognizable

languages of ω-pictures over Γ, such that, for L ∈ F , either L = ∅ or L is a Σ1

1
-

complete subset of Γω,ω, but one cannot decide which case holds.

Proof. We have seen that there exists a Büchi-recognizable language T ⊆

{0, 1}ω,ω which is Σ1

1
-complete.

On the other side the emptiness problem for recognizable languages of finite pictures

is known to be undecidable: if Σ is an alphabet having at least one letter then it is

undecidable whether a given recognizable language L ⊆ Σ⋆,⋆ is empty, see [13].

Let us define, for a finite picture p ∈ Σ⋆,⋆ over a finite alphabet Σ and an infinite

picture p′ ∈ Σω,ω
1 over the alphabet Σ1 = {0, 1}, the infinite picture p • p′ over the

alphabet Γ = Σ ∪ Σ1 ∪ {#}. We assume that Σ̂ = Σ ∪ {#}, Σ̂1 = Σ1 ∪ {#}, and

Γ̂ = Γ ∪ {#1}, where #1 is a new letter different from the letter #.

If p is a finite picture of size (m,n), the ω-picture p • p′ over Γ is defined by:

p • p′(0, i) = p • p′(i, 0) = #1 for all integers i ≥ 0,

p • p′(i, j) = p(i− 1, j − 1) for all integers i ∈ {1, . . . ,m+ 2} and j ∈ {1, . . . , n+ 2},

p • p′(i, j) = # for all integers i ∈ {1, . . . ,m+ 2} and j ≥ n+ 2,

p • p′(i, j) = # for all integers i ≥ m+ 2 and j ∈ {1, . . . , n+ 2},

p • p′(i, j) = p′(i− (m+ 2), j − (n+ 2)) for all integers i ≥ m+ 2 and j ≥ n+ 2.

The intuitive idea is to construct an infinite picture p•p′ having a prefix p “followed”

by the infinite picture p′, to “complete” elsewhere by some letters # and then to

border with letters #1 to get an ω-picture in Γω,ω.

For a language L ⊆ Σ⋆,⋆ we set L • T = {p • p′ | p ∈ L and p′ ∈ T }. It is easy

to see that if L is a recognizable language of finite pictures then L • T is a Büchi-
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recognizable language of ω-pictures because T is also Büchi-recognizable. There are

now two cases:

(1) If L is empty then L • T is empty too.

(2) If L is non-empty there is some finite picture p ∈ L ⊆ Σ⋆,⋆. Let then ψp be the

mapping from Σω,ω
1 into (Σ̂ ∪ Σ1)

ω,ω defined by ψp(p
′) = p • p′.

It is easy to see that the mapping ψp is continuous and that ψ−1
p (L • T ) = T . But

T is Σ1

1
-complete and L•T , as well as every Büchi-recognizable language of infinite

pictures, is a Σ1

1
-set because it is definable by an existential second order monadic

formula, [1]. This implies that L • T is a Σ1

1
-complete set.

We can now choose the family F to be the family of languages L •T obtained with

Σ = {0} and L running over recognizable languages of pictures over Σ. 2

In order to disprove the existence of decision procedures which test Büchi-recognizable

ω-picture languages for E-, respectively A-recognizability, we shall need the follow-

ing lemmas.

Lemma 5.2 Let Σ be an alphabet having at least two letters and L ⊆ Σω,ω be a

E-recognized language of ω-pictures. Then L is a Σ0

2
-subset of Σω,ω.

Proof. Let Σ be an alphabet having at least two letters and L ⊆ Σω,ω be

a language of ω-pictures which is E-recognized by (A,F ), where A=(Q,Σ,∆) is a

tiling system and F ⊆ Q.

Let R = {(p, ρ) ∈ Σω,ω × Qω2

| ρ is a run of A on p}. It is easy to see that R

is a closed subset of Σω,ω × Qω2

where Σω,ω × Qω2

is equipped with the classical

product topology.

Let RE = {(p, ρ) ∈ Σω,ω ×Qω2

| ∃v ∈ ω2 ρ(v) ∈ F}. It is easy to see that RE is

an open subset of Σω,ω ×Qω2

.

Then the set R ∩ RE is a boolean combination of open sets. In particular it is a

Σ0

2
-subset of Σω,ω ×Qω2

, i.e. a countable union of closed subsets of Σω,ω ×Qω2

.

But the topological space Σω,ω × Qω2

is compact because it is the product of two

compact spaces. Thus every closed subset of Σω,ω ×Qω2

is also compact. Therefore

R ∩RE is a countable union of compact subsets of Σω,ω ×Qω2

.

But the language L is E-recognized by (A,F ) so it is the projection of the set

R ∩ RE onto Σω,ω. The projection from Σω,ω × Qω2

onto Σω,ω is continuous and

the continuous image of a compact set is a compact set. Thus the language L is a

countable union of compact sets hence it is a countable union of closed sets, i.e. a

Σ0

2
-subset of Σω,ω. 2

Lemma 5.3 Let Σ be an alphabet having at least two letters and L ⊆ Σω,ω be a

A-recognized language of ω-pictures. Then L is a closed subset of Σω,ω.
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Proof. Let Σ be an alphabet having at least two letters and L ⊆ Σω,ω be

a language of ω-pictures which is A-recognized by (A,F ), where A=(Q,Σ,∆) is a

tiling system and F ⊆ Q.

We call cl(L) the topological closure of L and we are going to prove that L = cl(L).

For that purpose consider an ω-picture p in cl(L). For all integers i ≥ 1 there is

some ω-picture pi ∈ L such that p | {0,1,...,i}×{0,1,...,i}= pi |{0,1,...,i}×{0,1,...,i}

For each integer i ≥ 1, pi ∈ L thus there is some run ρi of A on pi such that for all

v ∈ ω2 ρi(v) ∈ F .

Consider now the partial runs ρ′i,j = ρi | {0,1,...,j}×{0,1,...,j}, for j ≤ i, of A on the

restriction of pi (hence also of p) to {0, 1, . . . , j} × {0, 1, . . . , j}.

We can now reason as in the proof of Theorem 4 (a) in [1]. These partial runs ρ′i,j
are arranged in a finitely branching tree, via the extension relation. By construction

this tree is infinite so by König’s Lemma there is an infinite path. This infinite path

determines a run of A on p which is A-accepting thus p ∈ L.

We have then proved that cl(L) ⊆ L so L = cl(L) and L is a closed subset of Σω,ω.

2

We can now infer the following result.

Proposition 5.4 There are no decision procedures which test Büchi-recognizable

ω-picture languages for E-, respectively A-recognizability.

Proof. Consider the family F of ω-picture Büchi-recognizable languages over

Γ, such that, for L ∈ F , either L = ∅ or L is a Σ1

1
-complete subset of Γω,ω.

In the first case, L is obviously A-recognizable and E-recognizable. In the second

case L is Σ1

1
-complete so in particular it is not a Borel subset of Γω,ω. By Lemmas

5.2 and 5.3 it cannot be E-recognizable (respectively, A-recognizable). But one

cannot decide which case holds. 2

As remarked in [1] Staiger-Wagner and co-Büchi recognizability reduces to E-recognizability

so the above proof can be applied to Staiger-Wagner and co-Büchi recognizability

instead of E-recognizability.

Proposition 5.1 gives an extreme separation result which implies other undecidabil-

ity results. For example for any Borel class Σ0

α or Π0

α, α being a countable ordinal

≥ 1, it is undecidable whether a given Büchi-recognizable language of ω-pictures is

in Σ0

α (respectively Π0

α). It is even undecidable whether a given Büchi-recognizable

language of ω-pictures is a Borel set or a Σ1

1
-complete set.

Remark that the same result holds if we replace Borel classes by arithmetical

classes Σi or Πi, i ≥ 1, and the class of Borel sets by the class of arithmetical

sets ∪n≥1Σn = ∪n≥1Πn.
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These results show a great contrast with the case of recognizable languages of infi-

nite words where such problems are decidable [16].

Recall now the following definition, see [1]: a tiling system is called deterministic if

on any picture it allows at most one tile covering the origin, the state assigned to

position (i + 1, j + 1) is uniquely determined by the states at positions (i, j), (i +

1, j), (i, j + 1) and the states at the border positions (0, j + 1) and (i + 1, 0) are

determined by the state (0, j), respectively (i, 0).

As remarked in [1], the hierarchy proofs of the classical Landweber hierarchy defined

using deterministic ω-automata “carry over without essential changes to pictures”.

In particular it is easy to see that a language of ω-pictures which is Büchi-recognized

by a deterministic tiling system is a Π0

2
-set.

Remark that if we use the classical Muller acceptance condition instead of the Büchi

condition, we can easily show, as in the case of infinite words, that a language of

ω-pictures which is Muller-recognized by a deterministic tiling system is a boolean

combination of Π0

2
-sets.

We now state the following results.

Proposition 5.5 Let Γ = {0, 1,#} as in Proposition 5.1. It is undecidable for a

given Büchi-recognizable language L ⊆ Γω,ω whether:

(1) L is Büchi-recognized by a deterministic tiling system.

(2) L is Muller-recognized by a deterministic tiling system.

(3) its complement Γω,ω − L is Büchi-recognizable.

(4) L̄ is ω2-regular.

Proof. Consider the family F of Büchi-recognizable ω-picture languages given

by Proposition 5.1. Then two cases may happen for L ∈ F : either L is empty or L

is Σ1

1
-complete.

In the first case L is obviously recognized by a deterministic Büchi or Muller tiling

system; its complement Γω,ω −L = Γω,ω is Büchi-recognizable and L̄ is ω2-regular.

In the second case L is Σ1

1
-complete. Thus L is not a Borel set hence it is neither

Büchi nor Muller-recognized by any deterministic tiling system and L̄ is not ω2-

regular. Moreover in this second case its complement Γω,ω − L is a Π1

1
-complete

subset of Γω,ω. It is well known that a Π1

1
-complete set is not a Σ1

1
-set thus it

cannot be Büchi-recognizable.

But Proposition 5.1 states that one cannot decide which case holds. 2
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ANNEXE :

ERRATUM TO THE PAPER :

ON RECOGNIZABLE LANGUAGES

OF INFINITE PICTURES

Recall first that the following result was stated as Proposition 4.7 in [Fin04].

Proposition 4.7 Let Σ be a finite alphabet having at least two letters.

(a) If L ⊆ Σω,ω is Büchi recognizable by a finite tiling system and is a Borel set

of rank α, then α is smaller than ωCK
1 .

(b) For every non null countable ordinal α < ωCK
1 , there exists some language of

infinite pictures L ⊆ Σω,ω which is Büchi recognizable by a finite tiling system

and is a Borel set of rank α.

Item (a) of this result was deduced from the fact that if L is a (lightface) Σ1
1-set

and that if moreover L is a Borel set then its Borel rank is smaller than ωCK
1 . This

fact, which is true if we replace the (lightface) class Σ1
1 by the (lightface) class ∆1

1,

is actually not true and the given reference [Mos80] does not contain this result.

Kechris, Marker and Sami proved in [KMS89] that the supremum of the set of Borel

ranks of (lightface) Π1
1, so also of (lightface) Σ1

1, sets is the ordinal γ1
2 .

This ordinal is precisely defined in [KMS89]. Kechris, Marker and Sami proved

that the ordinal γ1
2 is strictly greater than the ordinal δ12 which is the first non ∆1

2

ordinal. Thus in particular it holds that ωCK
1 < γ1

2 . Notice that the exact value of

the ordinal γ1
2 may depend on axioms of set theory. For more details, the reader is

referred to [KMS89] and to a textbook of set theory like [Jec02].

Notice that it seems still unknown whether every non null ordinal γ < γ1
2 is the

Borel rank of a (lightface) Π1
1 (or Σ1

1) set. On the other hand, for every non null

ordinal α < ωCK
1 , there exist some Σ0

α-complete and some Π0
α-complete sets in the

class ∆1
1 ⊂ Σ1

1. This is a well known fact of Effective Descriptive Set Theory which

is proved in detail in [FL07].

We can now state the following result which corrects the above false Proposition

4.7.

Theorem

(a) The Borel hierarchy of the class C of Büchi recognizable language of infinite

pictures is equal to the Borel hierarchy of the class Σ1
1.

(b) γ1
2 = Sup {α | ∃L ∈ C such that L is a Borel set of rank α}.
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(c) For every non null ordinal α < ωCK
1 , there exists some Σ0

α-complete and some

Π0
α-complete ω-languages in the class C.

This result follows easily from the proof of Lemmas 4.5 and 4.6 of [Fin04] and from

the above cited result of Kechris, Marker and Sami proved in [KMS89].

Notice that a very similar result was obtained in [Fin06] for the class of ω-languages

accepted by (real time) one counter Büchi automata, and in [Fin08] for the class of

infinitary rational relations accepted by 2-tape Büchi automata.
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