Soliton dynamics for the Korteweg-de Vries equation with multiplicative homogeneous noise - Archive ouverte HAL
Article Dans Une Revue Electronic Journal of Probability Année : 2009

Soliton dynamics for the Korteweg-de Vries equation with multiplicative homogeneous noise

Résumé

We consider a randomly perturbed Korteweg-de Vries equation. The perturbation is a random potential depending both on space and time, with a white noise behavior in time, and a regular, but stationary behavior in space. We investigate the dynamics of the soliton of the KdV equation in the presence of this random perturbation, assuming that the amplitude of the perturbation is small. We estimate precisely the exit time of the perturbed solution from a neighborhood of the modulated soliton, and we obtain the modulation equations for the soliton parameters. We moreover prove a central limit theorem for the dispersive part of the solution, and investigate the asymptotic behavior in time of the limit process.
Fichier principal
Vignette du fichier
kdvhomogene.pdf (195.01 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00352881 , version 1 (14-01-2009)

Identifiants

Citer

Anne de Bouard, Arnaud Debussche. Soliton dynamics for the Korteweg-de Vries equation with multiplicative homogeneous noise. Electronic Journal of Probability, 2009, 14, pp.1727-1744. ⟨hal-00352881⟩
344 Consultations
136 Téléchargements

Altmetric

Partager

More