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Abstract We consider a randomly perturbed Korteweg-de Vries equation. The perturbation
is a random potential depending both on space and time, with a white noise behavior in time,
and a regular, but stationary behavior in space. We investigate the dynamics of the soliton of
the KdV equation in the presence of this random perturbation, assuming that the amplitude
of the perturbation is small. We estimate precisely the exit time of the perturbed solution
from a neighborhood of the modulated soliton, and we obtain the modulation equations for
the soliton parameters. We moreover prove a central limit theorem for the dispersive part of
the solution, and investigate the asymptotic behavior in time of the limit process.

1. Introduction

Our aim is to describe the dynamics of a soliton solution of the Korteweg-de Vries equation
in the presence of a random potential, depending both on space and time and which is white
in time. After the first paper [21] showing “superdiffusion” of the soliton of the KdV equation
in the presence of an external force which is a white noise in time (see also [1], [16]), the
interest in such questions of soliton dynamics in the presence of either deterministic or random
perturbations has recently increased in the mathematical community. In [15], e.g. the question
is investigated with the help of inverse scattering methods, for different types of time-white
noise perturbations, still for the KdV equation, while in [11], [12], the case of a soliton of the
NLS equation is studied, with the presence of a slowly varying deterministic external potential.
Random potential perturbations for NLS equations have also been considered in [14] and [9].
The diffusion of solitons of the KdV equation in the presence of additive noise was numerically
investigated in [19]. Also, in [5], we studied the soliton dynamics for a KdV equation with
an additive space-time noise. Our aim here is to reproduce the analysis of [5] in the case
of a random potential, which is stationary in space : the solution of the stochastic equation
starting from a soliton at initial time will then stay close to a modulated soliton up to times
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small compared to ε−2 where ε is the amplitude of the random perturbation (see below). In
the present case, where the noise is multiplicative (the random potential) we are then able to
analyze more precisely the modulation equations for the soliton parameters and the linearized
equation for the remaining (dispersive) part of the solution, and especially its asymptotic
behavior in time.

We consider a stochastic KdV equation which may be written in Itô form as

(1.1) du + (∂3
xu +

1

2
∂x(u2))dt = εudW

where ε > 0 is a small parameter, u is a random process defined on (t, x) ∈ R
+ × R, W is

a Wiener process on L2(R) whose covariance operator φφ∗ is such that φ is a convolution
operator on L2(R) defined by

φf(x) =

∫

R

k(x − y)f(y)dy, for f ∈ L2(R).

The convolution kernel k satisfies

(1.2) ‖k‖1 :=

∫

R

(k2 + (k′)2)dx < +∞.

Considering a complete orthonormal system (ei)i∈N in L2(R), we may alternatively write W
as

(1.3) W (t, x) =
∑

i∈N

βi(t)φei(x),

(βi)i∈N being an independent family of real valued Brownian motions. The correlation function
of the process W is then given by

E(W (t, x)W (s, y)) = c(x − y)(s ∧ t), x, y ∈ R, s, t > 0,

where

c(z) =

∫

R

k(z + u)k(u)du.

The existence and uniqueness of solutions for stochastic KdV equations of the type (1.1)
but with an additive noise have been studied in [4], [7], [8]. The multiplicative case with
homogeneous noise as described above was considered in [6]: assuming, together with the
above condition, that k is an integrable function of x ∈ R allowed us to prove the global
existence and uniqueness of solutions to equation (1.1) in the energy space H1(R), that is in
the space where both the mass

(1.4) m(u) =
1

2

∫

R

u2(x)dx

and the energy

(1.5) H(u) =
1

2

∫

R

(∂xu)2dx − 1

6

∫

R

u3dx

are well defined. Note that m and H are conserved for the equation without noise, that is

(1.6) ∂tu + ∂3
xu +

1

2
∂x(u2) = 0.
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Under the above conditions on k, it was then proved in [6] that for any given initial data
u0 ∈ H1(R), there is a unique solution u of (1.1) with paths a.s. continuous for t ∈ R

+ with
values in H1(R).

Our aim in this article is to analyze the qualitative influence of a noise on a soliton solution
of the deterministic equation. More precisely, we study the qualitative behavior of solutions
of (1.1) in the limit ε tends to zero, assuming that the initial state of the solution is a soliton
of equation (1.6). We recall indeed that equation (1.6) possesses a two-parameter family of
solitary waves (or soliton) solutions, propagating with a constant velocity c > 0, with the
expression uc,x0

(t, x) = ϕc(x − ct + x0), x0 ∈ R, where

(1.7) ϕc(x) =
3c

2 cosh2(
√

cx
2 )

satisfies the equation

(1.8) ϕ′′
c − cϕc +

1

2
ϕ2

c = 0.

We do not recall here the well-known results concerning the stability of the soliton solutions
uc,x0

in equation (1.6), but we refer to [2], [3], [17] or [18] for a review of the stability questions
using PDE methods, or to [13] and [20] for a review of the stability of the solitons with the
help of the inverse scattering transform.

Let us consider as in [5] the solution uε(t, x) of equation (1.1) which is such that uε(0, x) =
ϕ0(x) where c0 > 0 is fixed. Then, in Section 2, we show, as we did in [5] for the additive
equation that up to times Cε−2, where C is a constant, we may write the solution uε as

(1.9) uε(t, x) = ϕcε(t)(x − xε(t)) + εηε(x − xε(t))

where the modulation parameters cε(t) and xε(t) satisfy a system of stochastic differential
equations and the remaining term εηε is small in H1(R). We then prove in Section 3 that the
process ηε converges as ε goes to zero, in quadratic mean, to a centered Gaussian process η
which satisfies an additively driven linear equation, with a conservative deterministic part; we
also investigate the behavior of the process η as t goes to infinity and prove that η is in some
sense a Ornstein-Uhlenbeck process, with a unique Gaussian invariant measure. In addition,
the parameters xε(t) and cε(t) may be developed up to order one in ε and we get

{

dxε = c0dt + εB1dt + εdB2 + o(ε)
dcε = εdB1 + o(ε),

where B1 and B2 are correlated real valued Brownian motions; keeping only the order one
terms in those modulation parameters, we then obtain a diffusion result on the modulated
soliton similar to the result obtained by Wadati in [21], but with a different time exponent (see
Section 4).

In all what follows, (., .) will denote the inner product in L2(R),

(u, v) =

∫

R

u(x)v(x)dx

and we denote by Tx0
the translation operator defined for ϕ ∈ C(R) by (Tx0

ϕ)(x) = ϕ(x+x0).
Note that since the process W is stationary in space, for any x0 ∈ R the process Tx0

W is still
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a Wiener process with covariance φφ∗. Indeed by (1.3),

Tx0
W (t, x) =

∑

k∈N

(φek)(x + x0)βk(t) =
∑

k∈N

(φẽk)(x)βk(t),

with ẽk(x) = Tx0
ek.

2. Modulation and estimate on the exit time

In this section, we prove the following theorem.

Theorem 2.1. Assume that the kernel k of the noise satisfies (1.2) together with k ∈ L1(R)
and let c0 be fixed. For ε > 0, let uε(t, x), as defined above, be the solution of (1.1) with
u(0, x) = ϕc0(x). Then there exists α0 > 0 such that, for each α, 0 < α ≤ α0, there is a
stopping time τ ε

α > 0 a.s. and there are semi-martingale processes cε(t) and xε(t), defined a.s.
for t ≤ τ ε

α, with values respectively in R
+∗ and R, so that if we set εηε(t) = uε(t, .+xε(t))−ϕcε(t),

then a.s. for t ≤ τ ε
α, ‖εηε(t)‖1 ≤ α and |cε(t) − c0| ≤ α. In addition, for α0 sufficiently small,

and any α ≤ α0, there is a constant C > 0, depending only on α and c0, such that for any
T > 0, there is an ε0 > 0, with, for each ε < ε0,

(2.1) P(τ ε
α ≤ T ) ≤ exp

(

− C(α, c0)

ε2T‖k‖2
H1

)

.

It was noticed heuristically in [5], and proved in [10] that in the additive case, the use of
the modulation parameters xε(t) and cε(t) was necessary in order to get the estimate (2.1).
Indeed, it was proved in [10] that if we denote by τ̃ ε,n

α = inf{t > 0, ‖uε,n(t, .) − ϕc0‖1 > α},
where uε,n is here the solution of equation (1.1), but with an additive noise that becomes
stationary in space as n goes to infinity (see [10] for a precise statement) then there exists a
constant C(α, c0) which depends on α and c0 but not on T such that

(2.2) limn→∞limε→0ε
2 log P (τ̃n,ε

α ≤ T ) ≥ −C(α, c0)

T 3
.

It is not clear that (2.2) is still true in the present multiplicative case, because the proof involves
a controlability problem with a potential which – up to now – is open.

Note also that the decomposition given in Theorem 2.1 is not unique, and is determined by
the choice of specific orthogonality conditions (see the proof below). In particular, contrary to
the additive case, we will be able here to investigate the asymptotic behavior in time of the
limit process by choosing one particular decomposition of the form given in Theorem 2.1. This
is the object of Section 3.3.
Proof of Theorem 2.1 The proof follows closely the proof of Theorem 2.1 in [5] and we refer to [5]
for more details. The parameters xε(t) and cε(t) are obtained thanks to the use of the implicit
function Theorem. These are then local semi-martingales defined as long as |cε(t) − c0| < α
and ‖uε(t, . + xε(t)) − ϕc0‖1 < α, and setting

εηε(t) = uε(t, . + xε(t)) − ϕcε(t),

one has for each ε > 0, almost surely,

(2.3) (ηε, ϕc0) = (ηε, ∂xϕc0) = 0.
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In order to estimate the exit time

τ ε
α = inf{t ≥ 0, |cε(t) − c0| > α or ‖εηε(t)‖1 > α},

we make use , as in [5], of the functional defined for u ∈ H1(R),

(2.4) Qc0(u) := H(u) + c0m(u)

where H and m are defined respectively in (1.4) and (1.5). Note that ϕc0 is a critical point of
Qc0. We denote by Lc0 the linearized operator around ϕc0, that is

(2.5) Lc0 = −∂2
x + c0 − 2ϕc0 .

The next lemma, which is proved with the use of the Itô Formula, using the same regularization
procedure as in [4], gives the evolution of H and m for the solution uε of (1.1) with uε(0) = ϕc0 :

Lemma 2.2. For any stopping time τ < +∞ a.s, one has

m(uε(τ)) = m(ϕc0) − ε

∫ τ

0
((uε)(s), dW (s)) + ε2|k|2L2

∫ τ

0
m(uε(s))ds

and

H(uε(τ)) = H(ϕc0) + ε

∫ τ

0
(∂xuε, ∂x(uεdW (s))) − ε

2

∫ τ

0
((uε)3, dW (s))(2.6)

+
ε2

2

∫ τ

0

{

|k|2L2 |∂xuε|2L2 + |k′|2L2 |uε|2L2

}

ds(2.7)

−ε2

2

∑

k

∫ τ

0

∫

R

(uε)3|φek|2dxds.(2.8)

Consider ν > 0 such that (Q′′
c0(ϕc0)v, v) ≥ ν‖v‖2

1 for any v ∈ H1 satisfying (v, ϕc0) =
(v, ∂xϕc0) = 0. The existence of such a constant is a classical result (see [2] or [3]). Then it is
easy to show (see [5]) that there is a constant C(α0) > 0 such that for any t < τ ε

α,

(2.9) Qc0(u
ε(t, . + xε(t))) − Qc0(ϕcε(t)) ≥

ν

4
‖εηε(t)‖2

1 − C|cε(t) − c0|2.

Now, if τ = τ ε
α ∧ t, then by (2.9), the translation invariance of Qc0, and Lemma 2.2

(2.10)

‖εηε(τ)‖2
1 ≤ 4

ν

[

Qc0(ϕc0) − Qc0(ϕcε(τ))
]

+ ε

∫ τ

0
(∂xuε(s), ∂x(uεdW (s)))

−ε

2

∫ τ

0
((uε)3(s), dW (s)) +

ε2

2

∫ τ

0
(|k|2L2 |∂xuε|2L2 + |k′|2L2 |uε|2L2)ds

−ε2

2

∑

k

∫ τ

0

∫

R

(uε)3(s)|φek|2dxds − c0ε

∫ τ

0
((uε)2, dW (s))

+c0ε
2|k|2L2

∫ τ

0
m(uε(s))ds + C|cε(τ) − c0|2.

The term |cε(τ) − c0| is then estimated thanks to the orthogonality condition (ηε, ϕc0) = 0
and the evolution of m(uε(τ)) given in Lemma 2.2; one obtains, for some constants µ > 0 and
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C > 0, depending only on c0 and α0 (with α ≤ α0)

µ|cε(τ) − c0| ≤
∣

∣|ϕc0 |2L2 − |ϕcε(τ)|2L2

∣

∣

≤ |εηε(τ)|2L2 + Cα|cε(τ) − c0| + 2ε

∣

∣

∣

∣

∫ τ

0
((uε)2, dW (s))

∣

∣

∣

∣

+2ε2|k|2L2

∫ τ

0
|uε(s)|2L2ds.

Hence, choosing α0 sufficiently small one gets

(2.11)
|cε(τ) − c0|2 ≤ C

[

|εηε(τ)|4L2 + 4ε2
∣

∣

∣

∫ τ

0
((uε)2, dW (s))

∣

∣

∣

2

+4ε4|k|4L2

(

∫ τ

0
|uε(s)|2L2ds

)2]

which, once inserted into (2.10) leads to

‖εηε(τ)‖2
1 ≤ C

[

|εηε(τ)|4L2 + ε
∣

∣

∣

∫ τ

0
(∂xuε, ∂x(uεdW (s)))

∣

∣

∣

+ε
∣

∣

∣

∫ τ

0
((uε)3, dW (s))

∣

∣

∣
+ c0ε

∣

∣

∣

∫ τ

0
((uε)2, dW (s))

∣

∣

∣

+4ε2
∣

∣

∣

∫ τ

0
((uε)2, dW (s))

∣

∣

∣

2
+ ε2‖k‖2

1

∫ τ

0
‖uε(s)‖2

1ds

+ε2|k|2L2

∫ τ

0
‖uε(s)‖3

1ds + ε4|k|4L2

(

∫ τ

0
|uε(s)|2L2ds

)2]

.

With this estimate in hand, together with (2.11), the conclusion of Theorem 2.1 follows with
the same arguments as in the proof of Proposition 3.1 in [10]. These arguments rely on classical
exponential tail estimates for stochastic integrals, after noticing that ‖uε(s)‖1 ≤ C, a.s. for
s ∈ [0, τ ε

α ∧ T ] and α ≤ α0, so that the quadratic variation of each of the integrals involved in
the above estimates are bounded above by CT . �

3. A central limit theorem

This section is devoted to the proof of the next theorem:

Theorem 3.1. Under the assumptions of Theorem 2.1, let α < α0 be fixed. Then we can
find c̃ε(t) and x̃ε(t) satisfying the conclusion of Theorem 2.1 such that if η̃ε is defined as in
Theorem 2.1, for any T > 0, the process (η̃ε(t))t∈[0,T ] converges in L2(Ω;L∞(0, τ ε

α ∧T ;L2(R)))
to a Gaussian process η̃ satisfying the additive linear equation

(3.1) dη̃ = ∂xLc0 η̃ dt + Q̃ϕc0dW̃ ,

with η̃(0) = 0, where W̃ is the Wiener process with covariance φφ∗ given by W̃ = Tc0tW , and

Q̃ is a projection operator. Moreover, for a > 0 sufficiently small compared to c0, the process
w(t, x) = eaxη̃(t, x) is a well defined H1 valued process, of Ornstein-Uhlenbeck type, which
converges in law to an H1-valued Gaussian random variable as t goes to infinity.

The conclusion of Theorem 3.1 will be obtained in three steps. The first step consists in
estimating the modulation parameters obtained in Theorem 2.1, in terms of ηε, using the
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equations for those parameters; then the convergence of ηε as ε tends to zero is proved, and
finally in the third step, a slight change in the modulation parameters is performed, in order
that the limit process η may be written as an Ornstein-Uhlenbeck process.

From now on, we assume that α is fixed and sufficiently small, so that the conclusion of
Theorem 2.1 holds, and we denote τ ε

α by τ ε.

3.1. Modulation equations. Since we know that the modulation parameters xε(t) and cε(t)
are semi-martingale processes adapted to the filtration generated by (W (t))t≥0, we may a priori
write the stochastic evolution equations for those parameters in the form

(3.2)

{

dxε = cεdt + εyεdt + ε(zε, dW )
dcε = εaεdt + ε(bε, dW )

where yε and aε are real valued adapted processes with a.s. locally integrable paths on [0, τ ε),
and bε, zε are predictable processes with paths a.s. in L2

loc(0, τ
ε;L2(R)). We then proceed as

in [5] : the Itô-Wentzell Formula applied to uε(t, x + xε(t)), together with equation (1.1) for
uε and the first equation of (3.2) for xε give a stochastic evolution equation for uε(t, x + xε).
On the other hand, the standard Itô Formula together with the second equation of (3.2) for cε

give an equation for the evolution of ϕcε(t). Replacing then ϕcε(t) + εηε(t, x) for uε(t, x+xε(t))
in the first equation leads to the following stochastic equation for the evolution of ηε(t) :

(3.3)

dηε = ∂xLc0η
εdt + (yε∂xϕcε − aε∂cϕcε)dt − ∂x((ϕcε − ϕc0)η

ε)dt

+(cε − c0 + εyε)∂xηεdt − ε
2∂x((ηε)2)dt + ϕcεTxεdW

+∂xϕcε(zε, dW ) − ∂cϕcε(bε, dW ) + εηεTxεdW + ε∂xηε(zε, dW )

+ ε
2∂2

xϕcε |φ∗zε|2L2dt − ε
2∂2

c ϕcε |φ∗bε|2L2dt + ε
∑

l∈N

∂x(ϕcεTxεφel)(z
ε, φel)dt

+1
2ε2∂2

xηε|φ∗zε|2L2dt + ε2
∑

l∈N

∂x(ηεTxεφel)(z
ε, φel)dt

where Lc0 is defined in (2.5). Now, taking the L2- inner product of equation (3.3) with ϕc0 , on
the one hand, and with ∂xϕc0 on the other hand, then using the orthogonality conditions (2.3)
and the fact that Lc0∂xϕc0 = 0, and finally identifying the drift parts and the martingale parts
of each of the resulting equations lead to the same kind of system that we previously obtained
in [5]; namely, setting

Y ε(t) =

(

yε(t)
aε(t)

)

and Zε
l (t) =

(

(zε, φel)
(bε, φel)

)

then one gets for the drift parts

(3.4) Aε(t)Y ε(t) = Gε(t)

where

(3.5) Aε(t) =

(

(∂xϕcε + ε∂xηε, ∂xϕc0) −(∂cϕcε , ∂xϕc0)
−(∂xϕcε , ϕc0) (∂cϕcε , ϕc0)

)
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and

Gε(t) =

(

Gε
1(t)

Gε
2(t)

)

,

with

(3.6)

Gε
1(t) = (ηε, Lc0∂

2
xϕc0) + (cε − c0)(η

ε, ∂2
xϕc0) + ε

2(∂x(ηε)2, ∂xϕc0)

+(∂x((ϕcε − ϕc0)η
ε), ∂xϕc0) − ε

2(∂2
xϕcε , ∂xϕc0)|φ∗zε|2L2

+ ε
2(∂2

c ϕcε , ∂xϕc0)|φ∗bε|2L2 − ε
∑

l∈N

(zε, φel)(∂x(ϕcεTxεφel), ∂xϕc0)

+1
2ε2(ηε, ∂3

xϕc0)|φ∗zε|2L2 − ε2
∑

l∈N

(∂x(ηεTxεφel), ∂xϕc0)(z
ε, φel)

and

(3.7)

Gε
2(t) = − ε

2(∂x(ηε)2, ϕc0) − (∂x((ϕcε − ϕc0)η
ε), ϕc0) + ε

2(∂2
xϕcε , ϕc0)|φ∗zε|2L2

− ε
2(∂2

c ϕcε , ϕc0)|φ∗bε|2L2 + ε
∑

(zε, φel)(∂x(ϕcεTxεφel), ϕc0)

+ ε2

2 (ηε, ∂2
xϕc0)|φ∗zε|2L2 + ε2

∑

l∈N

(∂x(ηεTxεφel), ϕc0)(z
ε, φel);

note that Aε(t) = A0 + O(|cε − c0| + ‖εηε‖1), a.s. for t ≤ τ ε with

A0 =

(

|∂xϕc0 |2L2 0
0 (ϕc0 , ∂cϕc0)

)

and O(|cε − c0|+ ‖ηε‖1) is uniform in ε, t and ω as long as t ≤ τ ε. Concerning the martingale
parts, one gets the equation

(3.8) Aε(t)Zε
l (t) = F ε

l (t), ∀l ∈ N

with

(3.9) F ε(t) =

(

−((ϕcε + εηε)Txεφel, ∂xϕc0)
((ϕcε + εηε)Txεφel, ϕc0).

)

Proposition 3.2. Under the above assumptions, there is a constant α1 > 0, such that if
α ≤ α1, then

(3.10) |φ∗zε(t)|L2 + |φ∗bε|L2 ≤ C1|k|L2 , a.s. for t ≤ τ ε

and

(3.11) |aε(t)| + |yε(t)| ≤ C2|ηε(t)|L2 + εC3, a.s. for t ≤ τ ε

for some constants C1, C2, C3, depending only on α and c0, and for any ε ≤ ε0.
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Proof The proof is exactly the same as the proof of Corollary 4.3 in [5], once noticed that, a.s.
for t ≤ τ ε,

∑

l∈N

|F ε
l (t)|2 ≤ C

∑

l∈N

|(ϕcε + εηε)Txεφel|2L2

≤ C
∑

l

∫

R

(ϕcε + εηε)2(x)[(Txεk) ∗ el]
2(x)dx

≤
∫

R

(ϕcε + εηε)2(x)
∑

l

(Txεk(x − .), el)
2dx

≤ C

∫

R

(ϕcε + εηε)2(x)|Txεk(x − .)|2L2dx

≤ C|k|2L2 |ϕcε + εηε|2L2 ≤ C|k|2L2

where we have used the Parseval equality in the fourth line. �

3.2. Convergence of ηε. Let us first assume that ηε has a limit as ε goes to zero, and take
formally the limit as ε goes to zero in the preceding equations. Then, as was noticed above,

lim
ε→0

Aε = A0 =

(

|∂xϕc0 |2L2 0
0 (ϕc0 , ∂cϕc0)

)

hence

(3.12) lim
ε→0

φ∗zε = − 1

|∂xϕc0|2L2

(Tc0tφ)∗(ϕc0∂xϕc0) := z

(3.13) lim
ε→0

φ∗bε =
1

(ϕc0 , ∂cϕc0)
(Tc0tφ

∗)(ϕ2
c0) := b

(3.14) lim
ε→0

yε =
1

|∂xϕc0 |2L2

(η, Lc0∂
2
xϕc0) := y

and

(3.15) lim
ε→0

aε = 0.

Moreover, formally, η satisfies the equation

(3.16)

dη = ∂xLc0ηdt + 1
|∂xϕc0

|2
L2

(η, Lc0∂
2
xϕc0)∂xϕc0dt

+ϕc0Tc0tdW − 1
2|∂xϕc0

|2
L2

(∂x(ϕ2
c0),Tc0tdW )∂xϕc0

− 1
(ϕc0

,∂cϕc0
)(ϕ

2
c0 ,Tc0tdW )∂cϕc0 .

It is easy to show that (3.16) has a unique adapted solution η with paths a.s. in C(R+,H1)
satisfying η(0) = 0. Moreover using the fact that (∂cϕc0 , ∂xϕc0) = 0, one easily gets from the
above equation that (η, ϕc0) = (η, ∂xϕc0) = 0, ∀t > 0.

Next, we make use of the following lemmas, whose proofs are obtained in the same way as
the corresponding Lemmas in [5].
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Lemma 3.3. Let η be the solution of (3.16) with η(0) = 0. Then, for any T > 0, there is a
constant C depending only on c0, T and ‖k‖1 such that

E
(

‖η(t)‖4
1

)

≤ C, ∀t ≤ T.

Lemma 3.4. Let ηε be the solution of (3.3), defined for t ∈ [0, τ ε[, obtained thanks to the
modulation procedure of Section 2. Then, for any T > 0,

E

(

sup
t≤τε∧T

|ηε(t)|4L2

)

≤ C(T, α, c0, ‖k‖1).

The above lemmas show that

(3.17) ∀T > 0, ∀q ≥ 2, lim
ε→0

E

(

sup
t≤T∧τε

|cε(t) − c0|q
)

= 0.

Indeed, the expression of cε(t)− c0 given by (3.2) together with (3.10) and (3.11) imply easily

E

(

sup
t≤T∧τε

|cε(t) − c0|2
)

≤ Cε2[1 + E

∫ T∧τε

0
|ηε(s)|2L2ds]

with C = C(α, c0, T, ‖k‖1). Then, (3.17) is deduced form Lemma 3.4 for q = 2, and follows for
all other values of q from the uniform boundedness of |cε(t) − c0| on [0, T ∧ τ ε]. Note that an
immediate consequence of (3.17) is the fact that

(3.18) ∀T > 0, ∀q ≥ 2, lim
ε→0

E

(

sup
t≤T∧τε

‖ϕcε(t) − ϕc0‖2
2

)

= 0.

We will finally need the next lemma.

Lemma 3.5. For any T > 0, and any q ≥ 1,

lim
ε→0

E

(

sup
t≤T∧τε

(

∑

l∈N

|Zε
l (t) − Zl(t)|2

)q)

= 0

where we have set for l ∈ N

Zl(t) =

(

(z, φel)
(b, φel)

)

,

z and b being given by (3.12) and (3.13), respectively.

Proof Here again, it is sufficient to consider the case q = 1. We recall that Zε
l satisfies equation

(3.8). First, it is clear that

lim
ε→0

E

(

sup
t≤T∧τε

‖(Aε(t))−1 − (A0(t))
−1‖2q

)

= 0, ∀q ≥ 1.

On the other hand, in view of (3.9), denoting F 0
l (t) the formal limit of F ε

l (t), one has

E

(

sup
t≤T∧τε

∑

l

|F ε
l (t) − F 0

l (t)|2
)

≤ CE

(

sup
t≤T∧τε

∑

l

|∂xϕc0(Txεφ − Tc0tφ)el|2L2

)

+ CE

(

sup
t≤T∧τε

‖ϕcε(t) − ϕc0‖2
1

)
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and

E

(

sup
t≤T∧τε

∑

l

|∂xϕc0(Txεφ − Tc0tφ)el|2L2

)

≤ ‖ϕc0‖2
1E

(

sup
t≤T∧τε

|k(. + xε(t) − c0t) − k|2L2

)

.

Then, the Itô Formula applied to the function

Kε(t, x) = (k(x + xε(t) − c0t) − k(x))2

using equation (3.2) for dxε(t), together with (3.10), (3.11), and (3.17) lead to the conclusion
of Lemma 3.5. �

Now, in order to prove that

(3.19) lim
ε→0

E

(

sup
t≤T∧τε

|ηε(t) − η(t)|2L2

)

= 0,

where η is the solution of (3.16) with η(0) = 0, it suffices to set vε = ηε − η, to deduce from
(3.16) and (3.3) the equation for dvε and to apply the Itô Formula to get the evolution of
|vε|2L2 . We do not give the details of those tedious, but easy computations. Finally, the use of
the following estimates :

ε|(vε, ∂x((ηε)2))| = ε|(∂xη, (ηε)2)| ≤ ε‖η‖1|ηε|2L4

≤ Cε‖η‖1|ηε|3/2
L2 |∂xηε|1/2

L2 ≤ C
√

ε‖η‖1|ηε|3/2
L2

on the one hand, and

|yε − y| + |aε| ≤ C(|vε|L2 + |cε − c0||ηε|L2 + ε|ηε|2L2 + |ηε|L2‖ϕcε − ϕc0‖1 + ε)

which is obtained as in the proof of Lemma 3.5 on the other hand, together with Lemma 3.3 to
3.5 allow to get the conclusion, that is the convergence of ηε to η in L2(Ω, L∞(0, τ ε∧T ;L2(R))).
�

3.3. Complements on the limit equation. First of all, we note that the modulation equa-
tions may be written at order one in ε as

{

dxε = c0dt + εydt + εW1dt + εdW2 + o(ε)
dcε = εdW1 + o(ε)

where
y = |∂xϕc0 |−2

L2 (η, Lc0∂
2
xϕc0),

W1(t) = (ϕc0 , ∂cϕc0)
−1(ϕ2

c0 , W̃ (t))

and

W2(t) = −1

2
|∂xϕc0 |−2

L2 (∂x(ϕc0
2), W̃ (t)).

Note that W1 and W2 are real valued Brownian motions, which are independent since

E(W1(t)W2(s)) = −1

2
|∂xϕc0 |−2

L2 (ϕc0 , ∂cϕc0)
−1(φ∗(∂x(ϕ2

c0)), φ
∗(ϕ2

c0))(t ∧ s) = 0

because the operator φ∗ commutes with spatial derivation.
Now, we want to investigate the asymptotic behavior in time of the process η. However, in

the present form, the process η does not converge in law as t goes to infinity; this is due to
the fact that the preceding modulation does not exactly correspond to the projection of the
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solution uε on the (two-dimensional) center manifold, in which case the remaining term would
belong to the stable manifold around the soliton trajectory. We now show that by slightly
changing the modulation parameters, we can get a new decomposition of the solution uε which
is defined on the same time interval as before, but which fits with the preceding requirements.
For that purpose, we first need to recall a few facts from [18].

The generalized nullspace of the operator ∂xLc0 (that is the operator arising in the linearized
evolution equation in the soliton reference frame) is spanned by the functions ∂xϕc0 and ∂cϕc0,
with the equality

∂xLc0∂cϕc0 = −∂xϕc0

and there are constants θ1 and θ2 (with θ1 = (ϕc0 , ∂cϕc0)) such that if we set

g̃1(x) = −θ1

∫ x

−∞
∂cϕc0(y)dy + θ2ϕc0 and g̃2(x) = θ1ϕc0

then the generalized nullspace of −Lc0∂x is spanned by g̃1 and g̃2 and

(g̃1, ∂xϕc0) = 1, (g̃1, ∂cϕc0) = 0, (g̃2, ∂xϕc0) = 0, (g̃2, ∂cϕc0) = 1.

We also set, for a > 0,

fa
1 (x) = eax∂xϕc0 , fa

2 (x) = eax∂cϕc0 , ga
1 (x) = e−axg̃1(x), ga

2 (x) = e−axg̃2(x),

so that (fa
i , ga

j ) = δij . Then the operator Aa defined for a > 0 by Aa = eax∂xLc0e
−ax has a well

defined generalized nullspace spanned by fa
1 , fa

2 and the spectral projection on this nullspace

is given by Pw =
∑2

k=1(w, ga
k)fa

k where w = eaxv, and v is an L2 function. Moreover, if
Q = I − P , then Q is the spectral projection on the stable manifold of Aa, and under the
condition 0 < a <

√

c0/3, there are constants C > 0 and b > 0 such that

(3.20) ‖eAatQw‖1 ≤ Ce−bt‖w‖1, ∀t > 0, ∀w ∈ H1,

where eAat is the C0-semi-group generated by Aa (see Theorem 4.2 in [18]).
Now, let η be the solution of (3.16) with η(0) = 0, and consider w(t, x) = eaxη(t, x). Note

that the orthogonality condition (η, ϕc0) = 0 implies (w, ga
2 ) = 0, so that Pw = λ(t)fa

1 with
λ(t) = (w(t), ga

1 ) a real valued stochastic process whose evolution is given by

(3.21)
λ(t) =

∫ t

0
|∂xϕc0 |−2

L2 (η(s), Lc0∂
2
xϕc0)ds −

∫ t

0
|∂xϕc0 |−2

L2 (ϕc0∂xϕc0 , dW̃ (s))

+

∫ t

0
(eaxϕc0dW̃ (s), ga

1 )

where we have used (3.16) and the fact that AaPw = 0 and λ(0) = 0. Hence, λ(t) is bounded
in L4(Ω;L∞(0, T ∧ τ ε)) by Lemma 3.3. Let us set x̃ε(t) = xε(t) − ελ(t) for t ∈ [0, τ ε[. Then

(3.22) uε(t, x + x̃ε(t)) = ϕcε(t)(x) + εη̃ε(t, x)

with

η̃ε(t, x) =
1

ε
(ϕcε(t)(x − ελ(t)) − ϕcε(t)(x)) + ηε(t, x − ελ(t)).

Note that, a.s. for t ≤ τ ε :

|ϕcε(t)(. − ελ(t)) − ϕcε(t) − ελ(t)∂xϕcε(t)|L2 ≤ ε2λ2(t)C(c0, α).
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Hence, it follows from Lemma 3.3, 3.4 and the above bound on λ that

(3.23) lim
ε→0

E
(

sup
t≤T∧τε

|η̃ε(t) − η̃(t)|2L2

)

= 0

with η̃(t) = η(t) − λ(t)∂xϕc0 . So now, with this new decomposition, we clearly have, setting
w̃(t, x) = eaxη̃(t, x) :

Pw̃ = 0, Qw̃ = Qw.

Also, if w2 = Qw, then the equation (3.16) implies

(3.24) dw2 = Aaw2dt + Qeaxϕc0dW̃

hence

w2(t) =

∫ t

0
eAa(t−σ)Q[eaxϕc0dW̃ (σ)];

the trace of the covariance operator of the Gaussian process w2 in H1 may be easily computed
and estimated thanks to (3.20) as

∫ t

0

∑

l

‖eAaσQeaxϕc0φel‖2
1dσ ≤ C

(

∫ t

0
e−bσdσ

)

∑

l

‖eaxϕc0φel‖2
1dσ ≤ C‖k‖2

1‖eaxϕc0‖2
1.

Moreover, this covariance operator converges as t goes to infinity and it follows that w2 con-
verges in law in H1 to a Gaussian random variable. The end of the statement of Theorem 3.1
follows, setting Q̃v = e−axQeaxv. �

4. A remark on the soliton diffusion

Let us go back to the stochastic evolution equations for the new modulation parameters,
that we may write as

(4.1)

{

dx̃ε = c0dt + εB1dt + εdB2 + o(ε)
dcε = εdB1 + o(ε)

with B1 = W1 and B2 = −(eaxϕc0W̃ (t), ga
1 ) = −(W̃ (t), ϕc0 g̃1). Note that B1 and B2 are now

correlated Brownian motions. We denote by

σ = (σij)i,j = cov(B1, B2).

If we keep only the order one terms in ε i.e. we consider the solution (Xε(t), Cε(t)) of the
system of SDEs

{

dXε = c0dt + εB1dt + εdB2

dCε = εdB1,

then (Xε(t) − c0t, C
ε(t) − c0) is a centered Gaussian vector, and it is easy to compute its

covariance matrix. Let us denote by µε
t the law of (Xε(t) − c0t, C

ε(t) − c0); we may compute

(4.2)

max
x∈R

E

(

ϕCε(t)(x − Xε(t))
)

= max
x∈R

∫ ∫

ϕc+c0(x − c0t − y)µε
t(dy, dc)

= max
x∈R

1

(det Σ)1/2

∫ ∫

ϕc+c0(x − c0t − y) exp
(

− 1

2
Σ−1

(

c
y

)

.

(

c
y

)

)

dcdy
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where Σ is the covariance matrix of (Xε(t) − c0t, C
ε(t) − c0), given by

Σ = ε2

(

σ11t σ12t + σ11
t2

2

σ12t + σ11
t2

2 σ22t + σ12t
2 + σ11

t3

3

)

.

It is not difficult to see that

exp
(

− 1

2
Σ−1

(

c
y

)

.

(

c
y

)

)

≤ exp
(

− 1

2

ε2

det Σ

(

σ11
t3

12
+ (σ22 −

σ2
12

σ11
t)
)

c2
)

.

Inserting this inequality in (4.2), using the fact that ϕc(x) = cϕ1(
√

cx) and integrating in y
give the bound

E

(

ϕCε(t)(x − Xε(t))
)

≤ K

(detΣ)1/2

∫ +∞

0

√
c + c0e

− 1

2

ε
2

detΣ
[σ11

t
3

12
+(σ22−

σ
2
12

σ11
t)]c2

dc

where K is a constant, and since
∫ +∞

0

√
ce−

c
2

2α2 dc ≤ Kα3/2

for another constant K, it follows

(4.3) max
x∈R

E

(

ϕCε(t)(x − Xε(t))
)

≤ K0ε
−1/2t−5/4

for t large enough.
This inequality has to be compared to the result of [21] where an additive equation with a

white noise in time was considered. An inequality of the form (4.3) was obtained, but with a

power t−3/2 instead of t−5/4.
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