Minimum Decomposition of a Digital Surface into Digital Plane Segments is NP-Hard - Archive ouverte HAL
Article Dans Une Revue Discrete Applied Mathematics Année : 2008

Minimum Decomposition of a Digital Surface into Digital Plane Segments is NP-Hard

Résumé

This paper deals with the complexity of the decomposition of a digital surface into digital plane segments (DPS for short). We prove that the decision problem (does there exist a decomposition with less than $\lambda$ DPS ?) is NP-complete, and thus that the optimisation problem (finding the minimum number of DPS) is NP-hard. The proof is based on a polynomial reduction of any instance of the well-known 3-SAT problem to an instance of the digital surface decomposition problem. A geometric model for the 3-SAT problem is proposed.
Fichier principal
Vignette du fichier
segmNP_revised2.pdf (3.49 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00350145 , version 1 (06-01-2009)

Identifiants

Citer

Isabelle Sivignon, David Coeurjolly. Minimum Decomposition of a Digital Surface into Digital Plane Segments is NP-Hard. Discrete Applied Mathematics, 2008, 157 (3), pp.558--570. ⟨10.1016/j.dam.2008.05.028⟩. ⟨hal-00350145⟩
269 Consultations
98 Téléchargements

Altmetric

Partager

More