Non-existence and uniqueness results for supercritical semilinear elliptic equations - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2009

Non-existence and uniqueness results for supercritical semilinear elliptic equations

Robert Stanczy
  • Fonction : Auteur
  • PersonId : 856919

Résumé

Non-existence and uniqueness results are proved for several local and non-local supercritical bifurcation problems involving a semilinear elliptic equation depending on a parameter. The domain is star-shaped but no other symmetry assumption is required. Uniqueness holds when the bifurcation parameter is in a certain range. Our approach can be seen, in some cases, as an extension of non-existence results for non-trivial solutions. It is based on Rellich-Pohozaev type estimates. Semilinear elliptic equations naturally arise in many applications, for instance in astrophysics, hydrodynamics or thermodynamics. We simplify the proof of earlier results by K. Schmitt and R. Schaaf in the so-called local multiplicative case, extend them to the case of a non-local dependence on the bifurcation parameter and to the additive case, both in local and non-local settings.
Fichier principal
Vignette du fichier
DolStan.pdf (278.19 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00349574 , version 1 (02-01-2009)
hal-00349574 , version 2 (22-08-2009)

Identifiants

Citer

Jean Dolbeault, Robert Stanczy. Non-existence and uniqueness results for supercritical semilinear elliptic equations. 2009. ⟨hal-00349574v1⟩
238 Consultations
273 Téléchargements

Altmetric

Partager

More