Winning regions of higher-order pushdown games
Résumé
In this paper we consider parity games defined by higher-order pushdown automata. These automata generalise pushdown automata by the use of higher-order stacks, which are nested ``stack of stacks'' structures. Representing higher-order stacks as well-bracketed words in the usual way, we show that the winning regions of these games are regular sets of words. Moreover a finite automaton recognising this region can be effectively computed. A novelty of our work are abstract pushdown processes which can be seen as (ordinary) pushdown automata but with an infinite stack alphabet. We use the device to give a uniform presentation of our results. From our main result on winning regions of parity games we derive a solution to the Modal Mu-Calculus Global Model-Checking Problem for higher-order pushdown graphs as well as for ranked trees generated by higher-order safe recursion schemes.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...