
HAL Id: hal-00345939
https://hal.science/hal-00345939v1

Submitted on 10 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Winning regions of higher-order pushdown games
Arnaud Carayol, Matthew Hague, Antoine Meyer, Luke Ong, Olivier Serre

To cite this version:
Arnaud Carayol, Matthew Hague, Antoine Meyer, Luke Ong, Olivier Serre. Winning regions of higher-
order pushdown games. Twenty-Third Annual IEEE Symposium on Logic in Computer Science (LICS
2008), Jun 2008, Pittsburgh, United States. pp.193-204. �hal-00345939�

https://hal.science/hal-00345939v1
https://hal.archives-ouvertes.fr

Winning regions of higher-order pushdown games∗

A. Carayol† M. Hague‡ A. Meyer§ C.-H. L. Ong¶ O. Serre‖

Abstract

In this paper we consider parity games defined by
higher-order pushdown automata. These automata gener-
alise pushdown automata by the use of higher-order stacks,
which are nested “stack of stacks” structures. Represent-
ing higher-order stacks as well-bracketed words in the usual
way, we show that the winning regions of these games are
regular sets of words. Moreover a finite automaton recog-
nising this region can be effectively computed.

A novelty of our work are abstract pushdown processes
which can be seen as (ordinary) pushdown automata but
with an infinite stack alphabet. We use the device to give a
uniform presentation of our results.

From our main result on winning regions of parity
games we derive a solution to the Modal Mu-Calculus
Global Model-Checking Problem for higher-order push-
down graphs as well as for ranked trees generated by
higher-order safe recursion schemes.

1 Introduction

Higher-order pushdown automata were introduced by
Maslov [31] as a generalisation of pushdown automata and
nested pushdown automata to extend the indexed languages
introduced by Aho [1]. Whereas an ordinary (i.e. order-
1) pushdown automaton works with a stack of symbols
(i.e. order-1 stack), a pushdown automaton of order 2 works
with a stack of (order-1) stacks. In addition to pushing
a symbol onto and popping a symbol from the top-most
order-1 stack, an order-2 pushdown automaton can dupli-
cate or remove the entire top-most (order-1) stack. Push-
down automata of higher orders are defined in a similar

∗We direct readers to the (downloadable) long version [11] of this paper
in which all proofs are presented.

†Arnaud.Carayol@univ-mlv.fr IGM (Université Paris Est
& CNRS)

‡Matthew.Hague@comlab.ox.ac.uk Oxford University
Computing Laboratory (OUCL)

§Antoine.Meyer@liafa.jussieu.fr LIAFA (Université
Paris Diderot – Paris 7 & CNRS)

¶Luke.Ong@comlab.ox.ac.uk OUCL
‖Olivier.Serre@liafa.jussieu.fr LIAFA

way and have been extensively studied as language accep-
tors [15, 17].

Recently, the infinite structures defined by these au-
tomata have received a lot of attention. In [28], the fami-
lies of infinite terms defined by higher-order pushdown au-
tomata were shown to correspond to the solutions of safe
higher-order recursion schemes. Subsequently, in [14, 13],
the ε-closure of their configuration graphs were shown to be
exactly those constructible from finite graphs using natural
graph transformations (see [36] for a survey).

A remarkable property of these graphs is that we can de-
cide the validity of any formula of monadic second-order
(MSO) logic. Unfortunately the decision procedure is non-
elementary (in the size of the formula) and this is already
so in the case of pushdown graphs. In order to obtain an
elementary decision procedure, we consider the µ-calculus:
a weaker modal logic equi-expressive with MSO over trees
[26]. The two main algorithmic problems in this setting are
the (local) model-checking problem (i.e. to decide if a par-
ticular configuration satisfies a given µ-calculus formula)
and the global model-checking problem (i.e. to compute a
finite description of the set of configurations satisfying a
given formula). To solve these problems, we consider the
associated two-player parity game, whose size is polyno-
mial in both the size of the automaton and of the formula
[16]. The two versions of the model-checking problem
above are respectively equivalent to deciding which player
wins from a given configuration and to giving a finite de-
scription of the winning region for each player.

For parity games defined by pushdown automata,
Walukiewicz has given an EXPTIME decision procedure
to compute the winner from a given configuration [38].
In [6, 32], the winning region is shown to be regular
when a configuration (q, w) is represented by the word
qw. Note that this result can easily be derived from the
results by Vardi [37]. For order-n pushdown automata, an
n-EXPTIME decision procedure for the local version of the
problem was given by Cachat [7] using techniques from
[37]. In this article, we shall consider the global version
of the problem i.e. the computation of a finite representa-
tion of the winning region, and we obtain, as a by-product,
a new proof of Cachat’s result.

To give a finite description of a set of higher-order stacks,

1

we represent these stacks as well-bracketed words. Note
that the depth of the bracketing is bounded by the order
of the stack. By extension, we say that a set of higher-
order stacks is regular if the set of associated well-bracketed
words is regular. Our main result is that the winning re-
gions of parity games over higher-order pushdown graphs
are regular. Moreover we can construct in n-EXPTIME a
finite deterministic automaton accepting it.

To simplify the presentation, we consider a more gen-
eral notion of pushdown automata, called abstract push-
down automata, which work with a possibly infinite stack
alphabet. Standard pushdown automata are abstract push-
down automata with a finite stack alphabet; order-(k + 1)
pushdown automata are abstract pushdown automata whose
stack alphabet is the (infinite) set of order-k stacks. Our
main technical result concerns parity games over the con-
figuration graphs of abstract pushdown automata. From an
abstract pushdown parity game, we construct a reduced par-
ity game based on the stack alphabet (i.e. which does not
make use of a stack structure) and we show that a finite de-
scription of the winning region of the original game can be
derived from a finite description of the winning region of
the reduced game. Applied to higher-order pushdown au-
tomata, this result allows us to reduce the problem of com-
puting the winning region of an order-(k + 1) pushdown
parity game to that of computing the winning region of an
order-k pushdown parity game. We also show that start-
ing from a winning strategy in the reduced parity game one
can effectively build an abstract pushdown automaton that
realises a winning strategy in the original game and whose
stack is synchronised with the one used in the game. Ap-
plied to higher-order pushdown parity games, this result al-
lows us to prove that any such game always admits an effec-
tive winning strategy realised by a higher-order pushdown
automata of the same order and whose stack is synchronised
with the one used in the game.

As an application of these results, we solve the µ-
calculus global model-checking problem for higher-order
pushdown graphs, and for ranked trees generated by safe
higher-order recursion schemes.

Related work. In [4], Bouajjani and Meyer considered
simpler reachability games over higher-order pushdown au-
tomata with a single control state. They showed that the
winning regions in these games are regular. In [25], Hague
and Ong extended the result to arbitrary higher-order push-
down automata. The results presented here have been ob-
tained by Hague and Ong, and also (separately and indepen-
dently) by the other co-authors. The present article follows
the latter approach whereas the proof in [23] generalises the
saturation method developed in [25].

A similar result was obtained in [12] for a stronger no-
tion of regularity (introduced in [10, 20]) which coincides

with MSO-definable sets of configurations. In contrast, the
simpler notion presented here can only capture properties
definable in µ-calculus. In particular, owing to the higher-
order push operations, the set of configurations reachable
from a given configuration is not regular in the sense of the
present paper. (To our knowledge the results presented here
do not appear to be derivable from Carayol’s work [10].)

2 Definitions

An alphabet A is a (possibly infinite) set of letters. In
the sequel A∗ denotes the set of finite words overA andAω

the set of infinite words overA. The empty word is denoted
by ε.

Infinite two-player games. Let G = (V,E) be a (pos-
sibly infinite) graph with vertex-set V and edge-set E ⊆
V × V . Let VE ∪ VA be a partition of V between two
players, Éloı̈se and Abelard. A game graph is a tuple
G = (VE, VA, E). An infinite two-player game on a game
graph G is a pair G = (G,Ω), where Ω ⊆ V ω is a winning
condition.

Éloı̈se and Abelard play in G by moving a token between
vertices. A play from some initial vertex v0 proceeds as
follows: the player owning v0 moves the token to a vertex v1
such that (v0, v1) ∈ E. Then the player owning v1 chooses
a successor v2 and so on. If at some point one of the players
cannot move, she/he loses the play. Otherwise, the play is
an infinite word Λ ∈ V ω and is won by Éloı̈se if and only
if Λ ∈ Ω. Nevertheless, for all game graphs considered in
this article one can always assume without loss of generality
that they have no dead-ends. A partial play is any prefix of
a play.

A strategy for Éloı̈se is a function assigning, to any par-
tial play ending in some vertex v ∈ VE, a vertex v′ such
that (v, v′) ∈ E. Éloı̈se respects a strategy Φ during some
play Λ = v0v1v2 · · · if vi+1 = Φ(v0 · · · vi), for all i ≥ 0
such that vi ∈ VE. A strategy Φ for Éloı̈se is winning from
some position v ∈ V if she wins every play that starts from
v and respects Φ. Finally, a vertex v ∈ V is winning for
Éloı̈se if she has a winning strategy from v, and the win-
ning region for Éloı̈se consists of all winning vertices for
her. Symmetrically, one defines the corresponding notions
for Abelard.

A game G is determined if, from any position, either
Éloı̈se or Abelard has a winning strategy. Determinacy of
all games considered here follows from Martin’s Theorem
[30].

For more details and basic results on games, we refer the
reader to [35, 40, 22, 39].

Higher-order pushdown processes. An order-n push-
down process is a tuple P = 〈Q,Σ,⊥, δ〉 whereQ is a finite

2

set of control states, Σ is a finite stack alphabet containing a
bottom-of-stack symbol ⊥ ∈ Σ, and ∆ is a transition func-
tion (to be defined below). Let Op1 = {pop1, push1(σ) |
σ ∈ Σ \ {⊥}} (resp. Opk = {popk, pushk}) be the set of
order-1 (resp. order-k with 2 ≤ k ≤ n) stack operations.
Then ∆ : Q×Σ → 2Q×Op≤n whereOp≤i =

⋃
1≤k≤i Opi.

An order-0 stack over Σ is an element of Σ, and for k >
0 an order-k stack over Σ is a finite sequence s1, · · · , s` of
order-(k − 1) stacks. Moreover we require that an order-k
stack be non-empty whenever k ≥ 2. Let k > 0 and take
an order-k stack s = s1, · · · , s`, we define the following
partial functions:

top1(s) =

{
s` if ` 6= 0 and k = 1,
top1(s`) if k > 1.

popi(s) =

{
s1, · · · , s`−1 if ` > 1 and k = i,

s1, · · · , s`−1, popi(s`) if k > i.

pushi(s) =

{
s1, s2, · · · , s`, s` if k = i,

s1, s2 · · · , s`−1, pushi(s`), if k > i.

A configuration of P is a pair (q, s) where q ∈ Q and s is
an order-n stack. At a configuration (q, s), P can apply any
transition (q′, op) ∈ ∆(q, top1(s)), leading to the configu-
ration (q′, op(s)). The configuration graph of P is defined
to be the graph whose vertices are the configurations and
whose edges are given by the transitions of P .

In order to define a notion of regularity over higher-order
stacks, we associate to each order-k stack a well-bracketed
word of depth k as follows. Let s = s1, · · · , s` be an order-
k stack. We define s̃ ∈ (Σ ∪ {[,]})∗ as

s̃ =

{
[s̃1 · · · s̃`] if k ≥ 1

s if k = 0 (i.e. s ∈ Σ)

A set S of order-k stacks is said to be regular if the lan-
guage S̃ = {s̃ | s ∈ S} is a regular subset of (Σ ∪ {[,]})∗.
By extension, a set C of configurations of an order-k push-
down automaton is said to be regular if the set C̃ = {s̃q |
(q, s) ∈ C} is a regular subset of (Σ ∪ {[,]})∗Q. For ex-
ample {[[a a] · · · [a a]︸ ︷︷ ︸

n

] | n ≥ 0} is a regular set of order-2

stacks, but {[[a · · ·a︸ ︷︷ ︸
n

] [a · · · a︸ ︷︷ ︸
n

]] | n ≥ 0} is not.

In particular, the set of configurations reachable from
a given configuration is not in general regular. Con-
sider for example an order-2 pushdown automaton with
two states q0 and q1 and two transitions ∆(q0, a) =
{(q0, push(a)), (q1, push2)}. The language of words
representing the configurations reachable from (q0, [[a]])
is the context-free language {[[an]]q0 | n ≥ 1} ∪
{[[an][an]]q1 | n ≥ 1}.

When considering higher-order pushdown automata as
acceptors of finite-word languages over a finite alphabet Σ,
we attach to each transition a symbol in Σ ∪ {ε} and fix

an initial state q0 together with a set F of final states. We
use the symbol ε to label silent transitions. We call such
automata labelled higher-order pushdown automata.

A word w ∈ Σ∗ is accepted by the automaton if there
exists a sequence of configurations c0

a1−→ . . .
an−→ cn

where c0 is the initial configuration (q0, [
n⊥]n), cn con-

tains a final state in F ⊆ Q and w is the word obtained
by removing all occurrences of ε in a1 . . . an. (We say
that w is the word traced out by the configuration sequence
c0

a1−→ . . .
an−→ cn.)

Proposition 1. Take an (resp. deterministic) order-k push-
down automaton. The set of words traced out by configura-
tion sequences from the initial configuration c0 to a configu-
ration c, where c ranges over a regular set of configurations,
is accepted by an (resp. deterministic) order-k pushdown
automaton.

Abstract Pushdown Processes. We situate the tech-
niques developed here in a general and abstract framework
of (order-1) pushdown processes whose stack alphabet is a
possibly infinite set.

An abstract pushdown process is a tuple P = 〈Q,Γ,∆〉
where Q is a finite set of states, Γ is a (possibly infinite)
set called an abstract pushdown alphabet and containing a
bottom-of-stack symbol denoted ⊥ ∈ Γ, and

∆ : Q× Γ → 2Q×{rew(γ),pop,push(γ) | γ∈Γ}

is the transition relation. We additionally require that for all
γ 6= ⊥, ∆(q, γ) does not contain any element of the form
(q, push(⊥)) or (q′, rew(⊥)), and that ∆(q,⊥) does not
contain any element of the form (q′, pop) or (q′, rew(γ))
with γ 6= ⊥, i.e. the bottom-of-stack symbol can only occur
at the bottom of the stack, and is never popped or rewritten.

An abstract pushdown content is a word in St = ⊥(Γ \
{⊥})∗. A configuration of P is a pair (q, σ) with q ∈ Q and
σ ∈ St. Note that the top stack symbol in some configura-
tion (q, σ) is the rightmost symbol of σ.

Remark 1. In general an abstract pushdown process is not
finitely describable, as the domain of ∆ is infinite and no
further assumption is made on ∆.

Example 1. A pushdown process is an abstract pushdown
process whose stack alphabet is finite.

A abstract pushdown process P induces a possibly in-
finite graph, called an abstract pushdown graph, denoted
G = (V,E), whose vertices are the configurations of P
(i.e. pairs from Q× St), and edges are defined by the tran-
sition relation ∆, i.e., from a vertex (p, σγ) one has edges
to:

• (q, σγ′) whenever (q, rew(γ ′)) ∈ ∆(p, γ).

3

• (q, σ) whenever (q, pop) ∈ ∆(p, γ).

• (q, σγγ′) whenever (q, push(γ ′)) ∈ ∆(p, γ).

Example 2. Higher-order pushdown processes are special
cases of abstract pushdown processes. Let n > 1 and con-
sider an order-n pushdown process P = 〈Q,Σ,∆〉. Set Γ
to be the set of all order-(n−1) stacks over Σ, and for every
p ∈ Q and γ ∈ Γ with σ = top1(γ), we define ∆′(p, γ) by

• (q, pop) ∈ ∆′(p, γ) iff (q, popn) ∈ ∆(q, σ);

• (q, push(γ)) ∈ ∆′(p, γ) iff (q, pushn) ∈ ∆(q, σ);

• (q, rew(op(γ))) ∈ ∆′(p, γ) iff (q, op) ∈ ∆(q, σ)
where k < n and op is an order-k action.

It follows that the abstract pushdown process 〈Q,Γ,∆′〉 and
P have isomorphic transition graphs.

Abstract Pushdown Parity Game. Consider a partition
QE ∪ QA of Q between Éloı̈se and Abelard. It induces
a natural partition VE ∪ VA of V by setting VE = QE ×
St and VA = QA × St. The resulting game graph G =
(VE, VA, E) is called an abstract pushdown game graph.
Finally, an abstract pushdown game is a game played on
such a game graph.

Let ρ be a colouring function from Q to a finite set of
colours C ⊂ N. This function is easily extended to a func-
tion from V to C by setting ρ((q, σ)) = ρ(q). The parity
condition is the winning condition defined by:

Ωpar = {v0v1 · · · | lim inf((ρ(vi))i≥0) is even}

For an abstract pushdown parity game, the main ques-
tions are the following:

1. For a given vertex, decide who wins from it.

2. For a given vertex, compute a winning strategy for the
winning player.

3. Compute a finite representation of the winning regions.

These three problems are polynomially equivalent to the
following problems respectively: model-checking for µ-
calculus, controller synthesis against µ-calculus specifica-
tions, and global model-checking for µ-calculus.

Automata with oracles. We now define a class of au-
tomata to accept the winning positions in an abstract push-
down game. An automaton with oracles is a tuple A =
(S, Q,Γ, δ, sin,O1 · · · On, Acc) where S is a finite set of
control states, Q is a set of input states, Γ is a (possibly
infinite) input alphabet, sin ∈ S is the initial state, Oi are
subsets of Γ (called oracles) and δ : S×{0, 1}n → S is the
transition function. Finally Acc is a function from S to 2Q.

Such an automaton is designed to accept in a deterministic
way configurations of an abstract pushdown process whose
abstract pushdown content alphabet is Γ and whose control
states are Q.

Let A = (S, Q,Γ, δ, sin,O1 · · ·On, Acc) be such an au-
tomaton. With every γ ∈ Γ we associate a Boolean vector
π(γ) = (b1, · · · bn) where

bi =

{
1 if γ ∈ Oi

0 otherwise.

The automaton reads a configuration C =
(q, γ1γ2 · · · γ`) from left to right. A run over C is
the sequence s0, · · · , s`+1 such that s0 = sin and
si+1 = δ(si, π(γi)) for every i = 0, · · · , `. Finally the run
is accepting if and only if q ∈ Acc(s`+1).

Remark 2. When the input alphabet is finite, it is easily
seen that automata with oracles behave as (standard) deter-
ministic finite automata.

In this article, we are going to use automata with ora-
cles to accept sets of configurations of higher-order push-
down automata. As seen in Example 2 for an order-(k+ 1)
pushdown automaton, we take Γ to be the set of all order-
k stacks. The sets of regular configurations of an order-
(k + 1) pushdown automaton are naturally captured by au-
tomata using, as oracles, regular sets of order-k stacks.

Proposition 2. Fix an order-(k + 1) pushdown au-
tomaton P and consider an automaton A with oracles
O1, . . . ,On respectively accepted by deterministic word
automata A1, . . . ,An. Let C be the set of configurations
of P accepted by A. Then we can construct a deterministic
finite automaton, of size O(|A||A1| · · · |An|), accepting the
set C̃.

3 Preliminary results

From now on, let us fix an abstract pushdown process
P = 〈Q,Γ,∆〉 together with a partition QE ∪ QA of Q
and a colouring function ρ using a finite set of colours C.
Denote respectively by G = (V,E) and G the associated
abstract pushdown game graph and abstract pushdown par-
ity game.

We can define an automaton with oracles that accepts
Éloı̈se’s winning region of the game G. The oracles of this
automaton are defined using conditional games. For every
subset R of Q the game G(R) played over G is the con-
ditional game induced by R over G. A play Λ in G(R) is
winning for Éloı̈se iff one of the following happens:

• In Λ no configuration with an empty stack (i.e. of the
form (q,⊥)) is visited, and Λ satisfies the parity con-
dition.

4

• In Λ a configuration with an empty stack is visited and
the control state in the first such configuration belongs
to R.

More formally, the winning condition in G(R) is

[Ωpar \ V
∗(Q× {⊥})V ω] ∪ V ∗(R× {⊥})V ω

For any state q, any stack letter γ 6= ⊥, and any sub-
set R ⊆ Q it follows from Martin’s Determinacy theorem
that either Éloı̈se or Abelard has a winning strategy from
(q,⊥γ) in G(R). We denote by R(q, γ) the set of subsets
R for which Éloı̈se wins in G(R) from (q,⊥γ):

R(q, γ) = {R ⊆ Q | (q,⊥γ) is winning for Éloı̈se in G(R)}

Proposition 3. Let σ ∈ (Γ\{⊥})∗, q ∈ Q and γ ∈ Γ\{⊥}.
Then Éloı̈se has a winning strategy in G from (q,⊥σγ) if
and only if there exists some R ∈ R(q, γ) such that (r,⊥σ)
is winning for Éloı̈se in G for every r ∈ R.

Proof (sketch). Assume Éloı̈se has a winning strategy from
(q,⊥σγ) in G and call it ϕ. Define R to be the set of all
r ∈ Q such that there is a play v0 · · · vk(r,⊥σ)vk+1 · · ·
where Éloı̈se respects ϕ and each vi for 0 ≤ i ≤ k is of
the form (p,⊥σσ′) for some σ′ 6= ε. Mimicking ϕ, Éloı̈se
wins in G(R) from (q, γ) and hence R ∈ R(q, γ). Finally,
for every r ∈ R there is a partial play λr that starts from
(q,⊥σγ), where Éloı̈se respectsϕ, and that ends in (r,⊥σ).
Hence (r,⊥σ) is also winning for Éloı̈se in G.

Conversely, let us assume that there is someR ∈ R(q, γ)
such that (r,⊥σ) is winning for Éloı̈se in G for every r ∈ R.
For every r ∈ R, let us denote by ϕr a winning strategy for
Éloı̈se from (r,⊥σ) in G. Let ϕR be a winning strategy for
Éloı̈se in G(R) from (q,⊥γ). In order to win in G from
(q,⊥σγ), Éloı̈se first mimics ϕR and, if eventually some
configuration (r,⊥σ) is reached she follows, ϕr from that
point onward.

Proposition 3 easily implies the following result.

Theorem 1. Let G be an abstract pushdown parity game
induced by an abstract pushdown process P = 〈Q,Γ,∆〉.
Then the set of winning positions in G for Éloı̈se (respec-
tively for Abelard) is accepted by an automaton with oracles
A = (S, Q,Γ, δ, si,O1 · · ·On, Acc) such that

• S = 2Q;

• si = ∅.

• There is an oracle Op,R for every p ∈ Q and R ⊆ Q,
and γ ∈ Op,R iff R ∈ R(p, γ) and γ 6= ⊥.

• There is an oracle O⊥ and γ ∈ O⊥ iff γ = ⊥

• Using the oracles, δ is designed such that:

– From state ∅ on reading ⊥, A goes to {p |
(p,⊥) is winning for Éloı̈se in G}.

– From state S on reading γ, A goes to {p | S ∈
R(p, γ)}.

• Acc is the identity function.

We will later use Theorem 1 in combination with Re-
mark 2 to prove that the set of winning positions in any
higher-order pushdown parity games is regular (see Theo-
rem 4).

4 Reducing the conditional games

The main purpose of this section is to build a new game
whose winning region embeds all the information needed to
determine the sets R(q, γ). Moreover the underlying game
graph no longer uses a stack.

For an infinite play Λ = v0v1 · · · , let StepsΛ be the set
of indices of positions where no configuration of strictly
smaller stack height is visited later in the play. More for-
mally, StepsΛ = {i ∈ N | ∀j ≥ i sh(vj) ≥ sh(vi)}, where
sh((q,⊥γ1 · · · γn)) = n + 1. Note that StepsΛ is always
infinite and hence induces a factorisation of the play Λ into
finite pieces.

In the factorisation induced by StepsΛ, a factor vi · · · vj

is called a bump if sh(vj) = sh(vi), called a Stair otherwise
(that is, if sh(vj) = sh(vi) + 1).

For any play Λ with StepsΛ = {n0 < n1 < · · · },
we can define the sequence (mcolΛi)i≥0 ∈ N

N by setting
mcolΛi = min{ρ(vk) | ni ≤ k ≤ ni+1}. This sequence
fully characterises the parity condition.

Proposition 4. For a play Λ, Λ ∈ Ωpar iff
lim inf((mcolΛi)i≥0) is even.

In the sequel, we build a new parity game G̃ over a new
game graph G̃ = (Ṽ , Ẽ). This new game simulates the
abstract pushdown graph, in the sense that the sequence of
visited colours during a correct simulation of some play Λ
in G is exactly the sequence (mcolΛi)i≥0. Moreover, a play
in which a player does not correctly simulate the abstract
pushdown game is losing for that player. We shall see that
the winning regions in G̃ allow us to compute the sets {γ ∈
Γ | R ∈ R(q, γ)}.

Before providing a description of the game graph G̃, let
us consider the following informal description of this sim-
ulation game. We aim at simulating a play in the abstract
pushdown game from some initial vertex (pin,⊥). In G̃ we
keep track of only the control state and the top stack symbol
of the simulated configuration.

The interesting case is when it is in a control state p with
top stack symbol α, and the player owning p wants to push
a symbol β onto the stack and change the control state to q.

5

(q, β,
−→
R,min(θ, ρ(q)))

tt ff(p, α,
−→
R, θ)

(p, α,
−→
R, θ, q, β)

(p, α,
−→
R, θ, q, β,

−→
S)

(q, β,
−→
S , ρ(q)) (s, α,

−→
R,min(θ, i, ρ(s)))

i

If ∃ (r, pop) ∈ ∆(p, α)

s.t. r ∈ Rθ

If ∃ (r, pop) ∈ ∆(p, α)

s.t. r /∈ R

∀ (q, rew(β)) ∈ ∆(p, α)

∀ (q, push(β)) ∈ ∆(p, α)

∀
−→
S ∈ P(Q)d+1

∀ s ∈ Si

Figure 1. Local structure of G̃.

For every strategy of Éloı̈se, there is a certain set of possible
(finite) continuations of the play that will end with popping
β (or actually a symbol into which β was rewritten in the
meantime) from the stack. We require Éloı̈se to declare a
vector

−→
S = (S0, . . . , Sd) of (d+1) subsets of Q, where Si

is the set of all states the game can be in after popping (pos-
sibly a rewriting of) β along those plays where in addition
the smallest visited colour while (possibly a rewriting of) β
was on the stack is i.

Abelard has two choices. He can continue the game by
pushing β onto the stack and updating the state (we call
this a pursue move). Otherwise, he can pick a set Si and
a state s ∈ Si, and continue the simulation from that state
s (we call this a jump move). If he does a pursue move,
then he remembers the vector

−→
S claimed by Éloı̈se; if later

on, a pop transition is simulated, the play stops and Éloı̈se
wins if and only if the resulting state is in Sθ where θ is the
smallest colour seen in the current level (this information is
encoded in the control state, reset after each pursue move
and updated after each jump move). If Abelard does a jump
move to a state s in Si, the currently stored value for θ is
updated to min(θ, i, ρ(s)), which is the smallest colour seen
since the current stack level was reached.

There are extra moves to simulate rew rules where the
top stack element and the value of θ are updated.

Therefore the main vertices of this new game graph are
of the form (p, α,

−→
R, θ), which are controlled by the player

who controls p. Intermediate vertices are used to handle the
previously described intermediate steps. The local structure

is given in Figure 1 (circled vertices are those controlled by
Éloı̈se). Two special vertices tt and ff are used to simulate
pop moves. This game graph is equipped with a colouring
function on the vertices and on the edges: vertices of the
form (p, α,

−→
R, θ) have colour ρ(p), an edge leaving from

a vertex (p, α,
−→
R, θ, q, β,

−→
S) has colour i where i is the

colour of the simulated bump. Note that intermediate ver-
tices could be introduced in order to have only colours on
vertices. A precise description of the graph is given in the
full proof of the following main result.

Theorem 2. The following holds.

1. A configuration (pin,⊥) is winning for Éloı̈se in G if
and only if (pin,⊥, (∅, . . . , ∅), ρ(pin)) is winning for
Éloı̈se in G̃.

2. For every q ∈ Q, γ ∈ Γ and R ⊆ Q, R ∈ R(q, γ)
if and only if (q, γ, (R, . . . , R), ρ(q)) is winning for
Éloı̈se in G̃.

Proof (sketch). We concentrate here on the first point, as the
second is actually a part of the proof of the first one. For the
direct implication, assume that the configuration (pin,⊥)
is winning for Éloı̈se in G, and let Φ be a corresponding
strategy for her.

Using Φ, we define a strategy ϕ for Éloı̈se in G̃ from
(pin,⊥, (∅, . . . , ∅), ρ(pin)). This strategy stores a partial
play Λ in G, that is an element in V ∗ (where V denotes the
set of vertices of G). At the beginning Λ is initialised to the
vertex (pin,⊥).

By a round we mean a factor of a play between two visits
through vertices of the form (p, α,

−→
R, θ). Both the strategy

ϕ and the update of Λ, are described for a round. When
Éloı̈se has to play from some vertex (p, α,

−→
R, θ) she con-

siders the value of Φ(Λ). If it is a pop move then she goes to
tt (one proves that this move is always possible). If it equals
(q, rew(β)), she goes to (q, β,

−→
R,min(θ, ρ(q))). Finally, if

it is equal to (q, push(β)), she goes to (p, α,
−→
R, θ, β).

From some vertex (p, α,
−→
R, θ, q, β), Éloı̈se has to pro-

vide a vector
−→
S ∈ P(Q)d+1 that describes which states

can be reached if β (or one of its successors by top rewrit-
ing) is popped, depending on the smallest visited colour in
the meantime. In order to define

−→
S , Éloı̈se considers the set

of all possible continuations of Λ · (q, σαβ) (where (p, σα)
denotes the last vertex of Λ) where she respects her strategy
Φ. For each such play, she checks whether some configura-
tion of the form (s, σα) is visited after Λ · (q, σαβ), that is
if the β is eventually popped. If it is the case, she considers
the first such configuration and the smallest colour i seen in
the meantime. For every i ∈ {0, . . . d}, Si, is exactly the set
of states s ∈ Q such that the preceding case happens.

Let (p, σα) be the last vertex in Λ. The memory Λ is
updated after each visit to a vertex of the form (p, α,

−→
R, θ),

6

we have three cases depending on the kind of the round. If it
was simulating a (q, rew(β)) action then the updated mem-
ory is Λ · (q, βσ). If it was simulating a bump of colour i
starting with some action (q, push(β)) and ending in a state
s ∈ Si then the memory becomes Λ extended by (q, σαβ)
followed by a sequence of moves, where Éloı̈se respects Φ,
that ends by popping β and reaches (s, σα) while having i
as smallest colour. Finally, if it was simulating a stair start-
ing with a (q, push(β)) action, then the updated memory is
Λ · (q, σαβ).

Therefore, any partial play λ in G̃ — in which Eloise re-
spects her strategy ϕ — is associated with a partial play Λ
in G. One shows that Éloı̈se respects Φ in Λ. The same ar-
guments work for an infinite play λ, and the corresponding
play Λ is infinite, starts from (pin,⊥) and Éloı̈se respects Φ
in that play. Therefore it is a winning play. Relying on that
fact one concludes that ϕ is winning.

For the converse implication one can reason in a rather
similar way by constructing a winning strategy for Abelard
in G̃ from one in G.

From a more constructive proof of Theorem 2 one can
construct natural strategies in G from strategies in G̃.

Theorem 3. Assume Éloı̈se has a winning strategy ϕ in G̃

that uses a memory ranging from some setM . Then one can
construct an abstract pushdown process T with output that
realises a winning strategy Φ for Éloı̈se in G. Moreover the
abstract pushdown alphabet used by T is Ṽ ×M and, at
any moment in a play where Éloı̈se respects Φ, the abstract
pushdown content of T has exactly the same height as the
one in the current position of the game graph. Finally, if ϕ
is effective the same holds for Φ.

Remark 3. In the special case of pushdown games, since Γ
is finite so is G̃. Hence in the previous statement, ϕ can be
chosen to be memoryless. Therefore one concludes that for
pushdown games one can construct a deterministic push-
down automaton that realises a winning strategy and whose
stack is synchronised with the one in the game [38].

5 Uniform solution of higher-order push-
down parity games and strategies

In this section we prove that the winning regions in
higher-order pushdown games are regular. The first step is
to note the following property.

Property 1. Let G be a higher-order pushdown parity game
of order-n and let G̃ be as in Theorem 2. Then G̃ is a higher-
order pushdown parity game of order-(n− 1).

Proof. One simply needs to consider how the game graph
G̃ is defined. It suffices to make the following observations

concerning the local structure given in Figure 1 when G is
played on the transition graph of a pushdown automaton of
order-n.

1. For every vertex of the form (p, α,
−→
R, θ),

(p, α,
−→
R, θ, q, β) or (p, α,

−→
R, θ, q, β,

−→
S), α is an

order-(n− 1) stack.

2. For every vertex of the form (p, α,
−→
R, θ, q, β) or

(p, α,
−→
R, θ, q, β,

−→
S), it holds that α = β.

This implies that any vertex in G̃ can be seen as a pair
formed by a state in a finite set and an order-(n− 1) stack.
Then one concludes the proof by checking that the edge re-
lation is the one of an order-(n − 1) pushdown automaton
(for the transition to vertices tt and ff one can introduce ver-
tices (tt, α) and (ff, α) for any order-(n− 1) stack α).

Remark 4. The number states of the higher-order push-
down automaton describing G̃ is exponential in the number
of states of the pushdown automaton describing G but both
games have the same number of colours.

Consider the order-1 case. As G̃ is finite one can solve it
and therefore effectively construct the automaton with ora-
cles as in Theorem 1. As this automaton has a finite input
alphabet, using Remark 2, we deduce the following result.

Property 2. [7, 32] The set of winning position in a push-
down parity game is regular.

Now, one can iterate this reasoning: applying inductively
Property 1 together with Proposition 2 and Theorem 2 easily
leads to the desired result.

Theorem 4. The sets of winning positions in a higher-order
pushdown parity game are regular and can be effectively
computed. Computing these regions is an n-EXPTIME-
complete problem for an order-n pushdown parity game.

Starting with an order-n pushdown parity game, and ap-
plying n times the reduction of Proposition 1, one ends
up with a parity game using the same number of colours
over a finite game graph whose size, using Remark 4, is n
times exponential in the size of the original order-n push-
down automaton. As solving this latter game is exponential
only on the number of colours [22] the global procedure
is in n-EXPTIME. The lower bound follows from the fact
that deciding the winner in two-player reachability games
over order-n pushdown is already n-EXPTIME-hard. A
self-contained proof can be found in [9]. The next remark
sketches a much simpler proof of this result.

Remark 5. Note that using the reduction of Theorem 2,
we can deduce n-EXPTIME-hardness by reduction to the
(n − 1)-EXPTIME-hardness of the emptiness problem for

7

order-n pushdown automata [17]. Consider an order-(n+1)
pushdown automaton P over a one-letter input alphabet.
The emptiness problem for P is polynomially equivalent to
deciding the winner in the associated one-player reachabil-
ity game. In the case of a one-player game, the reduction of
Theorem 2 can be tailored to yield a reduced game G̃ which
is a two-player game of polynomial size w.r.t to P . Hence
we establish that the emptiness problem for order-(n + 1)
pushdown automata can be polynomially reduced to decid-
ing the winner of two-player order-n game. This proves the
n-EXPTIME-hardness of the latter problem.

Remark 6. Theorem 4 generalises the result obtained by
Hague and Ong [25] for higher-order pushdown reachabil-
ity games.

Concerning strategies, we already noted in Remark 3
that a winning strategy can be realised by a pushdown au-
tomaton whose stack is synchronised with the one from the
game. Reasoning by induction and relying on Theorem 3,
one can obtain a similar result for the general case. More
precisely, if one defines the shape of an order-k stack to be
the stack of obtained by rewriting the stack symbols by a
fixed symbol �, we get the following result.

Theorem 5. Consider an order-k pushdown parity game.
Then one can construct, for any player, a deterministic
order-k pushdown automaton that realises a winning strat-
egy and whose stack has always the same shape as the one
in the game.

Remark 7. Theorem 5 means that the memory needed to
win a higher-order pushdown parity game can actually be
implemented in the underlying higher-order pushdown au-
tomaton defining the game by enriching its stack alphabet.

6 Global µ-calculus model-checking

Given a vertex (state) s in a state-transition graph K
and a formula ϕ, the model-checking problem asks whether
K, s |= ϕ holds (in words, whether the formula ϕ holds at s
in the structure K). The global model-checking problem is
the task of computing (if possible) a finite representation of
the set ||K||ϕ = {s | K, s |= ϕ} of vertices in K that satisfy
a given formula ϕ.

In the following we tackle the global model checking
problem when ϕ is a formula of the modal µ-calculus
[29, 2]. We consider two kinds of structures for K: con-
figuration graphs of higher-order pushdown automata, and
trees generated by higher-order safe recursion schemes.

Global model-checking of configuration
graphs of higher-order pushdown automata

The µ-calculus global model-checking problem for fam-
ilies of graphs closed under Cartesian product with finite

graphs is well-known to be equivalent to the solvability of
parity games over the same class. Hence Theorem 4 im-
plies the following characterisation of µ-calculus definable
sets over higher-order pushdown graphs:

Theorem 6. The µ-calculus definable sets over configura-
tion graphs of higher-order pushdown automata are exactly
the regular sets of configurations.

Remark 8. The preceding Theorem generalises a re-
sult of Bouajjani and Meyer in [4] for a weaker logic
(i.e. the E(U,X) fragment of CTL) over weaker structures
(i.e. higher-order pushdown automata with a single control
state).

Global model-checking of trees generated
by higher-order safe recursion schemes

Fix a (ranked) alphabet Σ. Types are generated from a
base type using the arrow constructor →. A higher-order
(deterministic) recursion scheme is a finite set of equations
of the form F x1 · · ·xn = e, where F is a typed non-
terminal, each xi is a typed variable, and e is an applicative
term constructed from the non-terminals, terminals (which
are the Σ-symbols), and variables x1, · · · , xn. The scheme
is said to be order-k if the highest order of the non-terminals
is k. We use recursion schemes here as generators of possi-
bly infinite term-trees. The ranked tree generated by a recur-
sion scheme is defined to be the (possibly infinite) term-tree
built up from the terminal symbols by applying the equa-
tions qua rewrite rules, replacing the formal parameters by
the actual parameters, starting from the initial non-terminal.
We refer the reader to [28] for a precise description of the
preceding, and for the meaning of safety which is a syntactic
constraint; here we rely on the following characterisation:

Theorem 7. [28] For each k ≥ 0, the ranked trees gen-
erated by safe order-k recursion schemes coincide with the
ε-closure of the unravelling of the configuration graphs of
deterministic order-k pushdown automata.

Consider a higher-order deterministic pushdown au-
tomaton labelled by Σ ∪ {ε}. After unravelling its config-
uration graph from the initial configuration, the operation
of ε-closure (see [34]) first adds an a-labelled edge from
c1 to c2 whenever there is a path from c1 to c2 that traces
out the word aε∗ and c2 is not the source-vertex of an ε-
labelled edge, and then removes the source-vertex of every
ε-labelled edge. The resultant graph is a tree.

A node in this tree is naturally represented by the word
over Σ labelling the path from the root to this node. Hence,
every µ-calculus formula over such a tree induces a lan-
guage in Σ∗ i.e. the set of words labelling a path from the
root to a node satisfying the formula. These languages can
be characterised as follows:

8

Theorem 8. Let k ≥ 0 and let T be the ranked tree gen-
erated by a given order-k safe recursion scheme. The µ-
calculus definable sets of T -nodes are recognisable by a
deterministic order-k pushdown automaton.

Proof (sketch). Let C be the configuration graph of a deter-
ministic order-k Σ ∪ {ε}-labelled pushdown automaton P ,
and let U be the unravelling of C from the initial configura-
tion c0, such that the ε-closure of U is isomorphic to T . Let
ϕ be a µ-calculus formula. A node in U satisfies ϕ if and
only if it corresponds to a path ending in a vertex of C that
satisfies ϕ. By Theorem 6, the set F of configurations of C
satisfying ϕ in C is regular. Moreover it is easy to see that
the set E of configurations of C which are not the source-
vertex of a ε-labelled edge in C is also regular. A node in T
at the end of a path from the root labelled by w satisfies ϕ
in T if and only if w is accepted by the labelled pushdown
automatonP from the initial configuration to the regular set
E ∩ F . By Proposition 1, the language consisting of such
w is accepted by an order-k pushdown automaton.

7 Discussions

There are a number of further directions:
• Can the quite general class of stack data games to-

gether with Theorem 2 be used to prove the decidability of
games over new structures (e.g. allowing arithmetic on the
stack)?

• Regular stack properties allow assertions over the
stack contents. Since information regarding regular tests
may be encoded in the control states and stack of an abstract
pushdown process, the definable sets are again regular.
Properties of this kind have been shown to have applications
in inter-procedural data-flow analysis [18] and security [27]
for the case of order-1 pushdown systems. One such secu-
rity property, implemented in Java and .Net [21, 5], allows
the programmer to decorate code with permission checks.
These checks require that all callers on the stack have suf-
ficient privileges to proceed. Do regular stack properties
have similar applications for other structures encodable as
abstract pushdown processes?

• The notion of regularity used in this article can capture
the µ-calculus definable sets of configurations. As men-
tioned previously, MSO-definable sets can be captured by a
stronger notion of regularity introduced in [10, 20]. Hence
a natural question is the decidability of the following prob-
lem: given a strong regular set (in the sense of [10, 20]),
decide whether it is regular (in the sense of this article).
Moreover, it is known from [20] that positional winning
strategies of higher-order pushdown parity game can be de-
scribed using strong regular sets (i.e. for each transition,
the set of configurations from which the strategy plays the
transition is a strong regular set) and a k-Exptime algorithm

was recently given in [12]. Is it possible to describe posi-
tional winning strategies using the weak notion of regularity
of this article?

• Order-k collapsible pushdown automata (CPDA) are
a generalisation of order-k pushdown automata in which
each symbol in the k-stack has a link to a stack below
it. As generators of ranked trees, they are equi-expressive
with (arbitrary) order-k recursion schemes [24]. A natural
question is to consider configuration graphs of CPDA, and
compute a finite representation of the µ-calculus definable
vertex-sets thereof.

An alternative method for computing the winning re-
gions of a higher-order pushdown parity game develops
the order-1 saturation techniques introduced by Bouajjani et
al. [3] and Finkel et al. [19] and generalised to Büchi games
by Cachat [8]. This algorithm uses a characterisation of
a game’s winning regions as a series of greatest and least
fixed points. Following this characterisation, a small ini-
tial automaton, accepting higher-order stacks, is expanded
until the winning region has been computed. Because this
technique does not require an n-exponential reduction to a
finite state game, it is possible that the state-explosion prob-
lem may be avoided in some, low-order, cases.

References

[1] A. Aho. Indexed grammars, an extension of context-
free grammars. JACM, 15:647-671, 1968.

[2] A. Arnold and D. Niwiński. Rudiments of mu-
calculus, 2001.

[3] A. Bouajjani, J. Esparza, and O. Maler. Reachabil-
ity analysis of pushdown automata: Application to
model-checking. In Proc. CONCUR’97, 1997.

[4] A. Bouajjani and A. Meyer. Symbolic reachability
analysis of higher-order context-free processes. In
Proc. FSTTCS’04, pp 135-147, 2004.

[5] D. Box and T. Pattison. Essential .NET: The Common
Language Runtime. Addison-Wesley Longman, 2002.

[6] T. Cachat. Uniform solution of parity games on prefix-
recognizable graphs. In Proc. INFINITY’02, 2002.

[7] T. Cachat. Higher order pushdown automata, the
Caucal hierarchy of graphs and parity games. In
Proc. ICALP’03, 2003.

[8] T. Cachat. Games on Pushdown Graphs and Exten-
sions. PhD thesis, RWTH Aachen, 2003.

[9] T. Cachat and I. Walukiewicz. The complexity of
games on higher order pushdown automata, 2007.

9

[10] A. Carayol. Regular sets of higher-order pushdown
stacks. In Proc. MFCS’05, pp 168-179, 2005.

[11] A. Carayol, M. Hague, A. Meyer, C.-H. L. Ong,
and O. Serre. Winning regions of higher-order
pushdown games. Tech. Report, 2007. 20
pages, downloable from http://www.liafa.
jussieu.fr/∼serre/.

[12] A. Carayol and M. Slaats. Positional Strategies for
Higher-Order Pushdown Parity Games. Submitted,
2008.

[13] A. Carayol and S. Wöhrle. The Caucal hierarchy of in-
finite graphs in terms of logic and higher-order push-
down automata. In Proc. FSTTCS’03, pp 112-123,
2003.

[14] D. Caucal. On infinite terms having a decidable
monadic theory. In Proc. MFCS’02, pp 165-176,
2002.

[15] W. Damm. The IO- and OI-hierarchies. TCS, 20:95-
207, 1982.

[16] E. A. Emerson and C. S. Jutla. Tree automata, mu-
calculus and determinacy (extended abstract). In
Proc. FoCS’91, pp 368-377, 1991.

[17] J. Engelfriet. Iterated stack automata and complexity
classes. Info. & Comp. 95:21-75, 1991.

[18] J. Esparza, A. Kučera, and S. Schwoon. Model-
checking LTL with regular valuations for pushdown
systems. In Proc. TACAS’01, pp 306-339, 2001.

[19] A. Finkel, B. Willems, and P. Wolper. A direct sym-
bolic approach to model checking pushdown systems.
In Proc. INFINITY’97, 1997.

[20] S. Fratani. Automates à pile de piles ... de piles. PhD
thesis, Université de Bordeaux I, 2005.

[21] L. Gong. Inside Java 2 platform security architecture,
API design, and implementation. Addison-Wesley
Longman, 1999.

[22] E. Grädel, W. Thomas, and T. Wilke, editors. Au-
tomata, Logics, and Infinite Games, LNCS 2500,
2002.

[23] M. Hague. Global Model Checking of Higher-Order
Pushdown Systems. PhD thesis, Oxford Univ., 2008.

[24] M. Hague, A. Murawski, C.-H. L. Ong and
O. Serre. Collapsible pushdown automata and recur-
sion schemes. In Proc. LICS’08, to appear.

[25] M. Hague and C.-H. L. Ong. Symbolic backwards-
reachability analysis for higher-order pushdown sys-
tems. In Proc. FOSSACS’07, pp 213-227, 2007.

[26] D. Janin and I. Walukiewicz. On the expressive com-
pleteness of the propositional mu-calculus with re-
spect to monadic second order logic. In Proc. CON-
CUR’96, pp 263-277, 1996.

[27] T. P. Jensen, D. Le Métayer, and T. Thorn. Verifica-
tion of control flow based security properties. In IEEE
Symp. Security and Privacy, pp 89-103, 1999.

[28] T. Knapik, D. Niwiński, and P. Urzyczyn. Higher-
order pushdown trees are easy. In Proc. FOSSACS’02,
pp 205-222, 2002.

[29] D. Kozen. Results on the propositional mu-calculus.
TCS, 27:333-354, 1983.

[30] D. A. Martin. Borel determinacy. Annals of Maths.,
102: 363-371, 1975.

[31] A. N. Maslov. Multi-level stack automata. Problems
Information Transmission, 12:38-43, 1976.

[32] O. Serre. Note on winning positions on pushdown
games with omega-regular winning conditions. IPL,
85:285-291, 2003.

[33] O. Serre. Games with winning conditions of high
borel complexity. TCS, 350(2-3):345-372, 2006.

[34] C. Stirling. Decidability of bisimulation equivalence
for pushdown processes. Technical Report EDI-INF-
RR-0005, University of Edinburgh, 2000.

[35] W. Thomas. On the synthesis of strategies in infinite
games. In Proc. STACS’95, pp 1-13, 1995.

[36] W. Thomas. Constructing infinite graphs with a de-
cidable MSO-theory. In Proc. MFCS’03, pp 113-124,
2003.

[37] M. Y. Vardi. Reasoning about the past with two-way
automata. In Proc. ICALP’98, pp 628-641, 1998.

[38] I. Walukiewicz. Pushdown processes: games and
model checking. Info. & Comp., 157:234-263, 2000.

[39] I. Walukiewicz. A landscape with games in the back-
groung. In Proc. LICS’04, pp 356-366, 2004.

[40] W. Zielonka. Infinite games on finitely coloured
graphs with applications to automata on infinite trees.
TCS, 200(1-2):135-183, 1998.

10

Appendix

A Proof of Proposition 1

Proposition 1. Take an (resp. deterministic) order-k push-
down automaton. The set of words traced out by configura-
tion sequences from the initial configuration c0 to a configu-
ration c, where c ranges over a regular set of configurations,
is accepted by an (resp. deterministic) order-k pushdown
automaton.

Proof. Let P = (Q,Σ,∆P) be an order-(k+ 1) pushdown
automaton. Let Γ be the set of all order-k stacks over Σ.

Let A = (QA, δA, q
A
0 , FA) be a deterministic automaton

over the alphabet Σ∪Q∪{[,]} accepting words of the form
wq with w a well-bracketed word of depth k + 1 over Σ ∪
{[,]} and q ∈ Q.

Let Θ be the set of partial functions from QA to QA.
Moreover with every word w ∈ Σ ∪ {[,]}, we associate the
partial function θw ∈ Θ defined by θw(q) = δA(q, w) for
q ∈ QA.

For an order-k stack s = (s1, . . . , s|s|), we take for all
i ∈ [1, |s|], θs

i ∈ Θ to be θs̃1···s̃i
.

With every order-k stack s over Σ we associate an order-
k stack [[s]] over Σ ∪ Θ as follows.

For an order-1 stack s = (γ1, . . . , γ`), we take [[s]] :=
(γ1, θ

s
1, . . . , θ

s
`−1, γ`). For an order-(k + 1) stack s =

(s1, . . . , s`), we take [[s]] := (s′1, . . . , s
′
`) for all i ∈ [1, `],

where s′i is obtained by pushing the symbol θs
i on top of

[[si]].
The idea of the construction is to simulate a configura-

tion (q, s) of the original automaton by the configuration
((q, γ, θ1, . . . , θk), [[s]]) where γ is the top-most symbol of
s and where for all i ∈ [1, k], θi = θti

|ti|−1 where ti is the
top-most order-i stack of s.

It is easy to check that a transition of the original automa-
ton can be similuated in a deterministic fashion by a finite
sequence of operations. To process sequences of operations,
we naturally introduce intermediate states and label the cor-
responding transition by the silent symbol ε.

Finally a state (q, γ, θ1, . . . , θk) is final if
δA(

−→
θ1 . . .

−→
θk(qA0), γ]kq) ∈ FA where

−→
θi (q) =

θi(δ(q, [)).

B Proof of Proposition 2

Proposition 2. Fix an order-(k + 1) pushdown au-
tomaton P and consider an automaton A with oracles
O1, . . . ,On respectively accepted by deterministic word
automata A1, . . . ,An. Let C be the set of configurations
of P accepted by A. Then we can construct a deterministic
finite automaton, of size O(|A||A1| · · · |An|), accepting the
set C̃.

Proof. Let P = (Q,Σ,∆P) be an order-(k+ 1) pushdown
automaton and let Γ be the set of all order-k stacks over Σ.

For the direct implication, consider an automaton with
oracles A = (S, Q,Γ, δ, sin,O1, . . . ,On, Acc). For i ∈
[1, n], we assumme that Oi \ {⊥} is accepted by the de-
terministic finite automaton Ai = (Qi, δi, q

i
0, Fi) over the

alphabet Σ ∪ {[,]}.
We construct a determistic finite automaton B =

(QB, δB, q
B
0 , FB) over Σ ∪ Q ∪ {[,]} such that for every

order-(k + 1) stack (γ1, . . . , γ`) and every state q ∈ Q,
((⊥, γ1, . . . , γ`), q) is accepted by A if and only if the word
[γ̃1 · · · γ̃`]q is accepted by B.

The set of states QB of B is equal to S × Q1 × . . . ×
Qn × [0, n] ∪ {qB0 , q

B
f } and the set of final states FB is re-

duced to {qBf }. Intuitvely, B is a synchronized product of A
together with the automata A1, . . . ,An. An extra compo-
nant is needed to keep track of the bracketing depth.
The transition function is defined by:

δB(qB0 , [) = (δA(sin, π(⊥)), q10 , . . . , q
n
0 , 1)

δB((s, q1, . . . , qn, `), σ) = (s, δ1(q1, σ), . . . , δn(qn, σ), `)
δB((s, q1, . . . , qn, `), [) = (s, δ1(q1, [), . . . , δn(qn, [), `+ 1)
δB((s, q1, . . . , qn, `

′),]) = (s, δ1(q1,]), . . . , δn(qn,]), `
′ − 1)

δB((s, q1, . . . , qn, 2),]) = (δ(s, π′), q01 , . . . , q
0
n, 1)

δB((s, q1, . . . , qn, 1),]) = (s, q01 , . . . , q
0
n, 0)

δB((s, q1, . . . , qn, 0), q) = qf for q ∈ Acc(s)

for all ` ∈ [2, k + 1], `′ ∈ [3, k + 1] and σ ∈ Σ and where
π(⊥) is the boolean vector (b1, . . . , bn) with for i ∈ [1, n],
bi is equal to 1 if ⊥ ∈ Oi and bi = 0 otherwise and similarly
π′ is the boolean vector (b1, . . . , bn) where for i ∈ [1, n], bi
is equal to 1 if δ(qi,]) ∈ Fi and 0 otherwise.

Conversely, let A = (QA, δA, q
A
0 , FA) be a determin-

istic automaton over the alphabet Σ ∪ Q ∪ {[,]} accepting
words of the form wq with w being a well-bracketed word
of depth k + 1 over Σ ∪ {[,]} and q ∈ Q. We can assume
without lost of generality that the set of states of A is of the
form Q′

A × [0, k + 1] and that for all w ∈ (Σ ∪ {[,]})∗,
if δA(qA0 , w) = (q, `) then w]` is a well-bracketed word of
depth k + 1.

For each pair (p, q) of states in Q′
A, we define the lan-

guage Op,q := {w | δ((p, 1), w) = (q, 1)} which is a regu-
lar set of well-bracketed words of depth k.

We can now define an automaton B with oracles ac-
cepting the configurations of P corresponding to words ac-
cepted by A. Assume thatQ′

A is equal to {q1, . . . , qm}. We
pick a bijection ρ from [1,m]2 to [1,m2].

The automaton B is formally defined as
(QB, Q,Γ, δB, q

B
0 ,O0, . . . ,Om2 , Acc).

We takeQB := Q′
A, Γ is the set of all level k stacks over

Σ, qB0 is such that qA0 = (qB0 , 0), O0 = {⊥} and for all
(i, j) ∈ [1,m]2, Oρ(i,j) = Oqi,qj

.
The transition function of δB is defined for all boolean

vector π = (b0, . . . , bm2) by:

11

{
δB(qB0 , π) = p for b0 = 1 and δA((qB0 , 0), [) = (p, 1)
δB(qi, π) = qj for bρ(i,j) = 1

finally, we take Acc(p) = {q ∈ Q | δA((p, 1),]q) ∈
FA} for all p ∈ Q′

A.

C Proof of Proposition 3

Proposition 3. Let σ ∈ (Γ\{⊥})∗, q ∈ Q and γ ∈ Γ\{⊥}.
Then Éloı̈se has a winning strategy in G from (q,⊥σγ) if
and only if there exists some R ∈ R(q, γ) such that (r,⊥σ)
is winning for Éloı̈se in G for every r ∈ R.

Proof. Assume Éloı̈se has a winning strategy from
(q,⊥σγ) in G and call it ϕ. Consider the set L of all
plays in G that starts from (q,⊥σγ) and where Éloı̈se re-
spects ϕ. Define R to be the (possibly empty) set that
consists of all r ∈ Q such that there is a play in L of
the form v0 · · · vk(r,⊥σ)vk+1 · · · where each vi for 0 ≤
i ≤ k is of the form (pi,⊥σσ

′
i) for some σ′

i 6= ε. In
other words, R consists of all states that can be reached on
popping (possibly a rewriting of) γ for the first time in a
play where Éloı̈se respects ϕ. Define a (partial) function
τ as τ((q,⊥σσ′)) = (q,⊥σ′) for every q ∈ Q and set
τ−1((q,⊥σ′)) = (q,⊥σσ′). Then τ−1 is extended as a
morphism over V ∗. It is easily shown that R ∈ R(q, γ).
Indeed a winning strategy for Éloı̈se in G(R) is defined as
follows:

• if some empty stack configuration has already been
visited play any move,

• otherwise goes to τ(ϕ(τ−1(λ)), where λ is the partial
play seen so far.

By definition of L and R it easily follows that the previous
strategy is winning for Éloı̈se in G(R), and therefore R ∈
R(p, γ).
Finally, for every r ∈ R there is, by definition of L a partial
play λr that starts from (q,⊥σγ), where Éloı̈se respects ϕ
and that ends in (r,⊥σ). A winning strategy for Éloı̈se in
G from (r,⊥σ) is given by ψ(λ) = ϕ(λ′r · λ), where λ′r
denotes the partial play obtained from λr by removing its
last vertex (r,⊥σ).

Conversely, let us assume that there is someR ∈ R(q, γ)
such that (r,⊥σ) is winning for Éloı̈se in G for every r ∈ R.
For every r ∈ R, let us denote by ϕr a winning strategy for
Éloı̈se from (r,⊥σ) in G. Let ϕR be a winning strategy for
Éloı̈se in G(R) from (q,⊥γ). Let us define τ and τ−1 as
in the direct implication and extend them as (partial) mor-
phism over V ∗. Define the following strategy for Éloı̈se in
G for plays starting from (q,⊥σγ). For any partial play λ,

• if λ does not contain a configuration of the form
(p,⊥σ) then ϕ(λ) = τ−1(ϕR(τ(λ)));

• otherwise let λ = λ′ · (r,⊥σ) · λ′′ where λ′ does not
contain any configuration of the form (p,⊥σ). From
how ϕ is defined in the previous case, it is follows that
r ∈ R. One finally sets ϕ(λ) = ϕr(λ

′′ · (r,⊥σ)).

It is then easy to prove thatϕ is a winning strategy for Éloı̈se
in G from (q,⊥σγ).

D Proof of Theorem 2

Theorem 2 The following holds.

1. A configuration (pin,⊥) is winning for Éloı̈se in G if
and only if (pin,⊥, (∅, . . . , ∅), ρ(pin)) is winning for
Éloı̈se in G̃.

2. For every q ∈ Q, γ ∈ Γ and R ⊆ Q, R ∈ R(q, γ)
if and only if (q, γ, (R, . . . , R), ρ(q)) is winning for
Éloı̈se in G̃.

D.1 The game graph G̃

Let us first precisely describe the game graph G̃. We refer
the reader to Figure 1.

• The main vertices of G̃ are those of the form
(p, α,

−→
R, θ), where p ∈ Q, α ∈ Γ,

−→
R =

(R0, . . . , Rd) ∈ P(Q)d+1 and θ ∈ {0, . . . , d}. A ver-
tex (p, α,

−→
R, θ) is reached when simulating a partial

play Λ in G such that:

– The last vertex in Λ is (p,⊥σα) for some σ ∈ Γ∗.

– Éloı̈se claims that she has a strategy to continue
Λ in such a way that if α (or a rewriting of it) is
eventually popped, the control state reached after
popping belongs to Rm, where m is the smallest
colour visited since the stack height was at least
|⊥σα|.

– The colour θ is the smallest one since the current
stack level was reached from a lower stack level.

A vertex (p, α,
−→
R, θ) is controlled by Éloı̈se if and only

if p ∈ QE.

• The vertices tt and ff are here to ensure that the vectors
−→
R encoded in the main vertices are correct. Vertex tt
is controlled by Abelard, whereas vertex ff belongs to
Éloı̈se. As these vertices are dead-ends, a play reach-
ing tt is won by Éloı̈se whereas a play reaching ff is
won by Abelard (recall that the player controlling the
dead-end loses).

12

There is a transition from some vertex (p, α,
−→
R, θ) to

tt, if and only if there exists a transition rule (r, pop) ∈

∆(p, α), such that r ∈ Rθ (this means that
−→
R is correct

with respect to this transition rule). Dually, there is a
transition from a vertex (p, α,

−→
R, θ) to ff if and only

if there exists a transition rule (r, pop) ∈ ∆(p, α) such
that r /∈ Rθ (this means that

−→
R is not correct with

respect to this transition rule).

• To simulate a transition rule (q, rew(β)) ∈ ∆(p, α),
the player that controls (p, α,

−→
R, θ) moves to

(q, β,
−→
R,min(θ, ρ(q))). Note that the last component

has to be updated as the smallest colour seen since the
current stack level was reached is now min(θ, ρ(q)).

• To simulate a transition rule (q, push(β)) ∈

∆(p, α), the player that controls (p, α,
−→
R, θ) moves to

(p, α,
−→
R, θ, q, β). This vertex is controlled by Éloı̈se

who has to give a vector
−→
S = (S0, . . . , Sd) ∈

P(Q)d+1 that describes the control states that can be
reached if β (or a symbol that rewrites it later by
applying rew rules) is eventually popped. To de-
scribe this vector, she goes to the corresponding vertex
(p, α,

−→
R, θ, q, β,

−→
S).

Any vertex (p, α,
−→
R, θ, q, β,

−→
S) is controlled by

Abelard who chooses either to simulate a bump or
a stair. In the first case, he additionally has to
pick the minimal colour of the bump. To simulate
a bump with minimal colour i, he goes to a vertex
(s, α,

−→
R,min(θ, i, ρ(s))), for some s ∈ Si, through

an edge coloured by i.

To simulate a stair, Abelard goes to the vertex
(q, β,

−→
S , ρ(q)).

The last component of the vertex (that stores the small-
est colour seen since the currently simulated stack level
was reached) has to be updated in all those cases. Af-
ter simulating a bump of minimal colour i, the minimal
colour is min(θ, i, ρ(s)). After simulating a stair, this
colour has to be initialized (since a new stack level is
simulated). Its value, is therefore ρ(q), which is the
unique colour since the (new) stack level was reached.

The only vertices that are coloured are those of the form
(p, α,

−→
R, θ) and the colour of such a vertex is ρ(p). Some

edges are also coloured. See Figure 1 for details.

Remark 9. In the definition of parity games we were re-
quired a total colouring function working only on vertices.
One can add extra intermediate states to remove colouring
on edges and assign the largest colour d to all uncoloured
vertices.

D.2 Proof of Theorem 2

This subsection is devoted to the proof of Theorem 2.
We only prove the first part of it, the proof of the second
one being a subpart of it.

Factorisation of a play in G.

Recall that for an infinite play Λ = v0v1 · · · in G StepsΛ

denote the set of indices of positions where no configuration
of strictly smaller stack height is visited later in the play.
More formally, StepsΛ = {i ∈ N | ∀j ≥ i sh(vj) ≥
sh(vi)}, where sh((q,⊥γ1 · · · γn)) = n + 1. Note that
StepsΛ is always infinite and hence induces a factorisation
of the play Λ into finite pieces.

Indeed, for any play Λ with StepsΛ = {n0 < n1 <
· · · }, one can define the sequence (Λi)i≥0 by setting Λi =
vni

· · · vni+1
. Note that each of the Λi is either a bump or

a stair. In the later we designate (Λi)i≥0 as the rounds fac-
torisation of Λ.

Factorisation of a play in G̃.

Recall that in G̃ some edges are coloured. Hence, to rep-
resent a play, we have to encode this information on edge
colouring. We only need to encode the colours in {0, . . . , d}
that appears when simulating a bump: a play will be repre-
sented as a sequence of vertices together with colours in
{0, . . . , d} that correspond to colours appearing on edges.

For any play in G̃, a round is a factor between two vis-
its through vertices of the form (p, α,

−→
R, θ). We have the

following possible forms for a round:

• The round is of the form (p, α,
−→
R, θ)(q, β,

−→
R, θ) and

corresponds therefore to the simulation of a rew rule.
We designate it as a top rewriting bump.

• The round is of the form
(p, α,

−→
R, θ)(p, α,

−→
R, θ, q, β)(p, α,

−→
R, θ, q, β,

−→
S)i

(s, α,
−→
R,min(θ, i, ρ(s))) and corresponds therefore

to the simulation of a rule pushing β followed by
a sequence of moves that ends by popping β (or a
rewriting of it). Moreover i is the smallest colour
encountered while β (or other top stack symbol
obtained by applying rew rules successively) was on
the stack.

• The round is of the form
(p, α,

−→
R, θ)(p, α,

−→
R, θ, q, β)(p, α,

−→
R, θ, q, β,

−→
S)

(q, β,
−→
S , ρ(q)) and corresponds therefore to the

simulation of a rule pushing a symbol β leading to a
new stack level below which the play will never go.
We designate it as a stair.

13

For any play λ = v0v1v2 · · · in G̃, we consider the
subset of indices corresponding to vertices of the form
(p, α,

−→
R, θ). More precisely:

Roundsλ = {n | vn = (p, α,
−→
R, θ), p ∈ Q, α ∈ Γ,

−→
R ∈ P(Q)d+1, 0 ≤ θ ≤ d}

Therefore, the set Roundsλ induces a natural factorisa-
tion of λ into rounds.

Definition 1 (Rounds factorisation). For a (possibly par-
tial) play λ = v0v1v2 · · · , we call rounds factorisation of λ,
the (possibly finite) sequence (λi)i≥0 of rounds defined as
follows. Let Roundsλ = {n0 < n1 < n2 < · · · }, then for
all 0 ≤ i < |Roundsλ|, λi = vni

· · · vni+1
.

Therefore, for every i ≥ 0, the first vertex in λi+1 equals
the last one in λi. Moreover, λ = λ1�λ2�λ3�· · · , where
λi�λi+1 denotes the concatenation of λi with λi+1 without
its first vertex.

Finally, the colour of a round is the smallest colour in
{0, . . . , d} appearing in the round.

In order to prove both implications of Theorem 2, we
build from a winning strategy for Éloı̈se in one game a win-
ning strategy for her in the other game. The main argu-
ment to prove that the new strategy is winning is to prove a
correspondence between the factorisations of plays in both
games.

Direct implication.

Assume that the configuration (pin,⊥) is winning for
Éloı̈se in G, and let Φ be a corresponding winning strategy
for her.

Using Φ, we define a strategy ϕ for Éloı̈se in G̃ from
(pin,⊥, (∅, . . . , ∅), ρ(pin)). This strategy stores a partial
play in G, that is an element in V ∗ (where V denotes the
set of vertices of G). This memory will be denoted Λ. At
the beginning Λ is initialized to the vertex (pin,⊥). We first
describe ϕ, and then we explain how Λ is updated. Both the
strategy ϕ and the update of Λ, are described for a round.

Choice of the move. Assume that the play is in some
vertex (p, α,

−→
R, θ) for p ∈ QE. The move given by ϕ de-

pends on Φ(Λ):

• If Φ(Λ) = (r, pop), then Éloı̈se goes to tt (Proposition
5 will prove that this move is always possible).

• If Φ(Λ) = (q, rew(β)), then Éloı̈se goes to
(q, β,

−→
R,min(θ, ρ(q))).

• If Φ(Λ) = (q, push(β)), then Éloı̈se goes to
(p, α,

−→
R, θ, q, β).

In this last case, or in the case where p ∈ QA and
Abelard goes to (p, α,

−→
R, θ, q, β), we also have to explain

how Éloı̈se behaves from (p, α,
−→
R, θ, q, β). She has to pro-

vide a vector
−→
S ∈ P(Q)d+1 that describes which states

can be reached if β (or its successors by top rewriting)
is popped, depending on the smallest visited colour in the
meantime. In order to define

−→
S , Éloı̈se considers the set

of all possible continuations of Λ · (q, σαβ) (where (p, σα)
denotes the last vertex of Λ) where she respects her strategy
Φ. For each such play, she checks whether some configu-
ration of the form (s, σα) is visited after Λ · (q, σαβ), that
is if the stack level of β is eventually left. If it is the case,
she considers the first configuration (s, σα) appearing after
Λ ·(q, σαβ) and the smallest colour i since β and (possibly)
its successors by top rewriting were on the stack. For every
i ∈ {0, . . . d}, Si, is exactly the set of states s ∈ Q such
that the preceding case happens. More formally,

Si = {s | ∃ Λ · (q, σαβ)v0 · · · vk(s, σα) · · · play in G

where Éloı̈se respects Φ and s.t. |vj | > |σα|, ∀j = 0, . . . , k

and min({ρ(vj) | j = 0, . . . , k} ∪ {ρ(q)}) = i}

Finally, we set
−→
S = (S0, . . . , Sd) and Éloı̈se moves to

(p, α,
−→
R, θ, q, β,

−→
S).

Update of Λ. The memory Λ is updated after each visit
to a vertex of the form (p, α,

−→
R, θ). We have three cases

depending on the kind of the last round:

• The round is a top rewriting bump and therefore a
(q, rew(β)) action was simulated. Let (p, σα) be the
last vertex in Λ, then the updated memory is Λ·(q, σβ).

• The round is a bump, and therefore a bump of colour i
(where i is the colour of the round) starting with some
action (q, push(β)) and ending in a state s ∈ Si was
simulated. Let (p, σα) be the last vertex in Λ. Then the
memory becomes Λ extended by (q, σαβ) followed by
a sequence of moves, where Éloı̈se respects Φ, that
ends by popping β and reach (s, σα) while having i
as smallest colour. By definition of Si such a sequence
of moves always exists.

• The round is a stair and therefore we have simulated a
(q, push(β)) action. If (p, σα) denotes the last vertex
in Λ, then the updated memory is Λ · (q, σαβ).

Therefore, with any partial play λ in G̃ in which Éloı̈se
respects her strategy ϕ, is associated a partial play Λ in G.
An immediate induction shows that Éloı̈se respects Φ in
Λ. The same arguments works for an infinite play λ, and
the corresponding play Λ is therefore infinite, starts from
(pin,⊥) and Éloı̈se respects Φ in that play. Therefore it is a
winning play.

14

The following proposition is a direct consequence of
how ϕ was defined.

Proposition 5. Let λ be a partial play in G̃ that starts from
(pin,⊥, (∅, . . . , ∅), ρ(pin)), ends in a vertex of the form
(p, α,

−→
R, θ), and where Éloı̈se respects ϕ. Let Λ be the play

associated with λ built by the strategyϕ. Then the following
holds:

1. Λ ends in a vertex of the form (p, σα) for some σ ∈ Γ∗.

2. θ is the smallest visited colour in Λ since α (or a sym-
bol that was later rewritten as α) has been pushed.

3. Assume that Λ is extended, that Éloı̈se keeps respecting
Φ and that the next move after (p, σα) is to some vertex
(r, σ). Then r ∈ Rθ.

Remark 10. Proposition 5 implies that the strategy ϕ is
well defined when it provides a move to tt. Moreover, one
can deduce that, if Éloı̈se respects ϕ, ff is never reached.

The preceding remark shows in particular that any finite
play ends in some vertex tt and is therefore won by Éloı̈se.
For infinite plays, using the definitions of G̃ andϕ, we easily
deduce the following proposition.

Proposition 6. Let λ be an infinite play in G̃ that starts
from (pin,⊥, (∅, . . . , ∅), ρ(pin)), and where Éloı̈se respects
ϕ. Let Λ be the associated play built by the strategy ϕ,
and let (Λi)i≥0 be its rounds factorisation. Let (λi)i≥0 be
the rounds factorisation of λ. Then, for every i ≥ 1 the
following hold:

1. λi is a bump if and only if Λi is a bump

2. λi has colour mcolΛi .

Proposition 6 implies that for any infinite play λ in G̃

starting from (pin,⊥, (∅, . . . , ∅), ρ(pin)) where Éloı̈se re-
spects ϕ, the sequence of visited colours in λ is (mcolΛi)i≥0

for the corresponding play Λ in G. Hence, using Proposi-
tion 4 we conclude that λ is winning if and only if Λ is
winning. As Λ is winning for Éloı̈se, it follows that λ is
also winning for her.

Converse implication1

Assume now that Éloı̈se has a winning strategy ϕ in G̃ from
(pin,⊥, (∅, . . . , ∅), ρ(pin)). Using ϕ, we build a strategy Φ
for Éloı̈se in G for plays starting from (pin,⊥).

1Note that in order to prove the converse implication one could follow
the direct implication and consider the point of view of Abelard. Neverthe-
less the proof we give here starts from a winning strategy for Éloı̈se in eG

and deduces a strategy for her in G: this induces a more involved proof but
has the advantage to lead to an effective construction of a winning strategy
for Éloı̈se in G if one has an effective strategy for her in eG

The strategy Φ uses, as memory, an abstract pushdown
content Π, to store the complete description of a play in G̃.
Recall here that a play in G̃ is represented as a sequence of
vertices together with colours in {0, . . . d}.

Therefore the abstract pushdown content alphabet of Π
is the set of vertices of G̃ together with {0, . . . , d}. In the
following, top(Π) will denote the top stack symbol of Π
while StCont(Π) will be the word obtained by reading
Π from bottom to top (without considering the bottom-
of-stack symbol of Π). In any play where Éloı̈se re-
spects Φ, StCont(Π) will be a play in G̃ that starts from
(pin,⊥, (∅, . . . , ∅), ρ(pin)) and where Éloı̈se respects her
winning strategy ϕ. Moreover, for any play Λ where Éloı̈se
respects Φ, we will always have that top(Π) = (p, α,

−→
R, θ)

if and only if the current configuration in Λ is of the form
(p, σα). Finally, if Éloı̈se keeps respecting Φ, and if α (or a
symbol that rewrite it later) is eventually popped the config-
uration reached will be of the form (r, σ) for some r ∈ Ri,
where i is the smallest visited colour since α (or some sym-
bol that was later rewritten as α) was on the stack. Initially,
Π only contains (pin,⊥, (∅, . . . , ∅), ρ(pin)).

In order to describe Φ, we assume that we are in some
configuration (p, σα) and that top(Π) = (p, α,

−→
R, θ). We

first describe how Éloı̈se plays if p ∈ QE, and then we
explain how the stack is updated.

• Choice of the move. Assume that p ∈ QE and that
Éloı̈se has to play from some vertex (p, σα). For this,
she considers the value of ϕ on StCont(Π).

If it is a move to tt, Éloı̈se plays an action (r, pop) for
some state r ∈ Rθ. Lemma 1 will prove that such an r
always exists.

If the move given by ϕ is to go to some vertex
(q, β,

−→
R,min(θ, ρ(q))), Éloı̈se applies the transition

(q, rew(β)).

If the move given by ϕ is to go to some vertex
(p, α,

−→
R, θ, q, β), then Éloı̈se applies the transition

(q, push(β)).

• Update of Π. Assume that the last move, played by
Éloı̈se or Abelard, was to go from (p, σα) to some
configuration (r, σ). The update of Π is illustrated
by figure 2 and explained in what follows. Éloı̈se
pops in Π until she finds some configuration of the
form (p′, α′,

−→
R′, θ′, p′′, α′′,

−→
R) that is not preceded by

a colour in {0, . . . , d}. This configuration is therefore
in the stair that simulates the pushing of α′′ onto the
stack (here if α′′ 6= α then α′′ was later rewritten as
α). Éloı̈se updates Π by pushing θ in Π followed by
(r, α′,

−→
R′,min(θ′, θ, ρ(r))).

Assume that the last move, played by Éloı̈se or
Abelard, was to go from (p, σα) to some configu-

15

ration (q, σα′). Then Éloı̈se update Π by pushing
(q, α′,

−→
R,min(θ, ρ(q))).

Assume that the last move, played by Éloı̈se or
Abelard, was to go from (p, σα) to some configuration
(q, σαβ), let (p, α,

−→
R, θ, q, β,

−→
S) = ϕ(StCont(Π) ·

(p, α,
−→
R, θ, q, β)). Intuitively,

−→
S describes which

states Éloı̈se can force play to reach if β is even-
tually popped. Éloı̈se updates Π by successively
pushing (p, α,

−→
R, θ, q, β), (p, α,

−→
R, θ, q, β,

−→
S), and

(q, β,
−→
S , ρ(q)).

The following lemma gives the meaning of the informa-
tion stored in Π.

Lemma 1. Let Λ be a partial play in G, where Éloı̈se re-
spects Φ, that starts from (pin,⊥) and that ends in a con-
figuration (p, σα). We have the following facts:

1. top(Π) = (p, α,
−→
R, θ) with

−→
R ∈ P(Q)d+1 and 0 ≤

θ ≤ d.

2. StCont(Π) is a partial play in G̃ that starts from
(pin,⊥, (∅, . . . , ∅), ρ(pin)), that ends with (p, α,

−→
R, θ)

and where Éloı̈se respects ϕ.

3. θ is the smallest colour visited since α (or some symbol
that was later rewritten as α) was pushed.

4. If Λ is extended by some move that pops α, the config-
uration (r, σ) that is reached is such that r ∈ Rθ.

Proof. The proof goes by induction on Λ. We first show
that the last point is a consequence of the second and third
points. To aid readability, one can refer to Figure 2. As-
sume that the next move after (p, σα) is to apply an ac-
tion (r, pop) ∈ ∆(p, α). The second point implies that
(p, α,

−→
R, θ) is winning for Éloı̈se in G̃. If p ∈ QE, by defi-

nition of Φ, there is some edge from that vertex to tt, which
means that r ∈ Rθ and allows us to conclude. If p ∈ QA,
note that there is no edge from (p, α,

−→
R, θ) (winning posi-

tion for Éloı̈se) to the losing vertex ff . Hence we conclude
the same way.

Let us now prove the other points. For this, assume that
the result is proved for some play Λ, and let Λ′ be an exten-
sion of Λ. We have two cases, depending on how Λ′ extends
Λ:

• Λ′ is obtained by applying a rule of type rew or push.
The result is trivial in that case.

• Λ′ is obtained by applying a pop rule. Let (p, σα) be
the last configuration in Λ, and let

−→
R be the last vector

component in top(Π) when in configuration (p, σα).
By the induction hypothesis, it follows that Λ′ = Λ ·

(p′, σ)

(p′′, σα′′) (p, σα)

σ = σ′α′

Π

· · ·

(p
′,

α
′,
−→R

′,
θ
′)

(p
′,

α
′,
−→R

′,
θ
′,

p
′′,

α
)

(p
′,

α
′,
−→R

′,
θ
′,

p
′′,

α
′′,

−→R
)

(p
′′,

α
′′,

−→R
,
ρ
(p

′′))

(p
,
α

,
−→R

,
θ
)

· · ·

(p, σα) min. col. = θ

min. col. = θ′

(p′, σ)
(r, σ)

σ = σ′α′

Π · · ·

(p
′,

α
′,
−→R

′,
θ
′)

(p
′,

α
′,
−→R

′,
θ
′,

p
′′,

α
′′)

(p
′,

α
′,
−→R

′,
θ
′,

p
′′,

α
′′,

−→R
)

θ

(r
,
α

′,
−→R

′,
m

in
(θ

′,
θ
,
ρ
(r

)))

min. col.=
min(θ′, θ, ρ(r))

Figure 2. Updating the strategy’s stack Π

16

(r, σ) with r ∈ Rθ. Considering how Π is updated,
and using the fourth point, we easily deduce that the
new strategy stack Π is as desired (one can have a look
at Figure 2 for more intuition).

Actually, we easily deduce a more precise result.

Lemma 2. Let Λ be a partial play in G starting from
(pin,⊥) and where Éloı̈se respects Φ. Let (Λi)i≥0 be its
rounds factorisation. Let λ = StCont(Π), where Π de-
notes the strategy’s stack in the last vertex of Λ. Let
(λi)i=0,...,k be the rounds factorisation of λ. Then the fol-
lowing holds:

• λi is a bump if and only if Λi is a bump.

• λi has colour mcolΛi .

Both lemmas 1 and 2 are for partial plays. A version for
infinite plays would allow us to conclude. Let Λ be an in-
finite play in G. We define an infinite version of λ by con-
sidering the limit of the stack contents (StCont(Πi))i≥0

where Πi is the strategy’s stack after the first i moves in
Λ. See [33] for similar constructions. It is easily seen that
such a limit always exists, is infinite and corresponds to a
play won by Éloı̈se in G̃. Moreover the results of Lemma 2
apply.

Let Λ be a play in G with initial vertex (pin,⊥), and
where Éloı̈se respects Φ, and let λ be the associated infinite
play in G̃. Therefore λ is won by Éloı̈se. Using Lemma 2
and Proposition 4, we conclude, as in the direct implication
that Λ is winning.

E Proof of Theorem 3

Theorem 3. Assume Éloı̈se has a winning strategy ϕ in G̃

that uses a memory ranging from some setM . Then one can
construct an abstract pushdown process T with output that
realises a winning strategy Φ for Éloı̈se in G. Moreover the
abstract pushdown alphabet used by T is Ṽ ×M and, at
any moment in a play where Éloı̈se respects Φ, the abstract
pushdown content of T has exactly the same height as the
one in the current position of the game graph. Finally, if ϕ
is effective the same holds for Φ.

Proof (sketch). The proof strongly relies on the converse
implication of the proof of Theorem 2. Hence we assume
that the reader read Section D.2 where the following was
proved. Starting from a winning strategy for Éloı̈se in G̃

from (pin,⊥, (∅, . . . , ∅), ρ(pin)) we built a winning strat-
egy Φ for Éloı̈se in G that is winning from (pin,⊥). More-
over Φ uses an abstract pushdown content Π as a memory
and the stack alphabet of Φ is the set of vertices in G̃ aug-
mented by the set of colours {0, . . . , d}. Assume now thatϕ

is a strategy with memory ranging from some set M . Then,
it is fairly easy to note that Π can be modified (and de-
noted Π′) so that it is now over a larger alphabet (namely
the Cartesian product of the previous one with M) and that
its M component is exactly the value of the memory over
StCont(Π). Hence the move given by ϕ over StCont(Π′)
only depends on top(Π′).

At that point we have the desired result except that Π′ is
not synchronised (i.e. always has the same height) with the
abstract pushdown content of the game graph. Indeed Π′

stores for instance all bumps on a given level which can ar-
bitrarily increases its height. Nevertheless we can note that
the only case where we really use the fact that Π′ is a stack
is when we simulate a pop action and have to remove a lot
of symbols from Π′ (until finding the step that reached the
currently left stack level). When doing this we always go
back to the last moment where some stack level was vis-
ited. Hence instead of collecting information on bumps in
Π′ we can forget about it and only recall the information
on the last configuration of each stack level. Therefore, if
we denote by Π′′ this new stack, it contains exactly one el-
ement per stack level in the game and therefore always has
the same height than the stack in the game. Hence we have
the desired result.

So far we have only considered the case where we start
from a configuration with an empty stack. In order to deal
with the general case, we only have to explain how to ini-
tialise Π′′. This can be done by following the idea be-
hind Theorem 1. Indeed, consider some (winning) posi-
tion (p, σ) with σ = ⊥σ1 · · ·σn. Let ∅ · R0, · · ·Rn be the
run of the automaton A from Theorem 1 on ⊥σ1 · · ·σn.
Then set vi = (p, σi, (Ri, · · · , Ri), ρ(p)) and initialise Π′′

as ⊥v0 · · · vn. Now if one defines the winning strategy as in
the previous case with this initial value, it leads to a winning
strategy from (p, σ). This is immediate if σn (and its pos-
sibly rewritings) is never popped. Otherwise, it mainly fol-
lows from the fact that Éloı̈se wins from (r,⊥σ1 · · ·σn−1)
for any r ∈ Rn (and by induction).

F Proof of Theorem 4

Theorem 4. The sets of winning positions in a higher-
order pushdown parity game are regular and can be ef-
fectively computed. Computing these regions is an n-
EXPTIME-complete problem for an order-n pushdown par-
ity game.

Proof. Regularity of the wining region is directly obtained
by combining Property 1 together with Proposition 2 and
Theorem 2. Hence, we only discuss the complexity issue.
The upper bound comes from two facts:

17

• The description (by means of a higher-order pushdown
automaton) of G̃ is exponentially larger than the one of
G (the control state space is exponentially larger).

• Both G and G̃ use the same number of colours

Starting with an order-n parity pushdown game, and apply-
ing n time the reduction of Theorem 2, one ends up with a
parity game using (d+ 1) colours over a finite game graph
whose size is n times exponential in the size of the original
order-n pushdown automaton. As solving this latter game
is exponential only on the number of colours [22] the global
procedure is in n-EXPTIME.

For the lower bound, it follows from the fact that decid-
ing the winner in an order-n pushdown two-player reacha-
bility game is already n-EXPTIME-hard. Indeed, checking
emptiness of a nondeterministic higher-order pushdown au-
tomaton of order-n is an (n− 1)-EXPTIME complete prob-
lem [17]. Trivially this result is still true if we assume that
the input alphabet is reduced to a single letter. Now con-
sider an order-(n+ 1) nondeterministic higher order push-
down automaton A whose input alphabet is reduced to a
single letter. The language accepted by A is non-empty if
and only if there is a path from the initial configuration of
A to a final configuration of A in the transition graph G of
A. Equivalently the language accepted by A is non-empty
if and only if Éloı̈se wins the reachability game G over G
where she controls all vertices (and where the play starts
from the initial configuration of A and where final vertices
are those corresponding to final configurations of A). Now
consider the reduction used to prove Theorem 2 and apply
it to G (and adapt it to the – simpler – reachability win-
ning condition): it leads to an equivalent reachability game
G̃ that is now played on the transition graph of an order-n
pushdown automaton. In the new game graph, the main ver-
tices are of the form (p, s, R): hereR is a subset ofQ as we
no longer need to deal with colours and we no longer need
to use the θ component to store information on the small-
est colour. The important fact is that R can be forced to
be a singleton: this follows from the fact that all vertices
in G are controlled by Éloı̈se (and from the proof’s details).
Therefore, one concludes that the size of the game graph as-
sociated with G̃ is polynomial in the size of A. Hence, one
has shown the following: checking emptiness for an order-
(n+1) nondeterministic higher order pushdown automaton
whose input alphabet is reduced to a single letter can be
polynomially reduced to solve a reachability game over the
transition graph of an order-n higher order pushdown au-
tomaton. In conclusion, this last problem is n-EXPTIME
hard (and actually n-EXPTIME-complete).

G Proof of Theorem 5

Theorem 5. Consider an order-k parity pushdown game.
Then one can construct, for any player, a deterministic
order-k pushdown automaton that realises a winning strat-
egy and whose stack has always the same shape as the one
in the game.

Proof (sketch). The order 1 case was noted in Remark 3.
For the general case, we reason by induction using Theorem
3 together with the base case (order 1).

Assume the result is proved at order k and consider some
order-(k+1) game G. Then using Property 1 we get that G̃

is a game of order k. Hence we conclude on the existence
of a strategy realised by a deterministic order-k pushdown
automaton whose stack has always the same shape as the
one in G̃. Now apply Theorem 3: it leads to a strategy in
G realised by an abstract pushdown process whose abstract
pushdown content is the product of the vertices in G̃ to-
gether with the memory used to win in G̃, that is the product
of two order-k stacks having the same shape. Hence, this
product can be though as a single order-k stack, and there-
fore the resulting strategy in G is realised by an order-(k+1)
automaton. Finally, the fact that this latter automaton al-
ways has the same shape as the current configuration in the
game, easily follows by construction (and induction).

H Proof of Theorem 6

Theorem 6. The µ-calculus definable sets over transition
graphs of higher-order pushdown automata are regular sets
of configurations.

Proof (sketch). Given some µ-calculus formula ϕ a classi-
cal construction [16] leads a finite game graph Gϕ whose
vertices are all possible subformulas of ϕ together with a
colouring function ρ. Then for any structure K and any ver-
tex v in K, the following holds: K, v |= ϕ iff Éloı̈se wins
from (v, ϕ) in the parity game induced by K × Gϕ. The
underlying graph of this game is the cartesian product of K
and Gϕ, the partition of its vertices as well as the associated
colouring function being inherited from the ones for Gϕ.
Then, it follows that ||K||ϕ = {v | (v, ϕ) ∈ WE} where
WE denotes the winning region for Éloı̈se in the previous
game.

The previous construction does not rely on K being finite
and can be used for instance to solve the µ-calculus model-
checking problem against pushdown processes [38]. In the
case where K is the transition graph of some higher-order
pushdown process, the game graphK×Gϕ is also the transi-
tion graph of some higher-order pushdown process and the
partition of its vertices as well as its associated colouring
function only depend on the control states. Hence, the so-
lution of the global µ-calculus model-checking problem for

18

such a graph can be deduced from the (regular) winning re-
gion of a higher-order parity pushdown game by a simple
operation that preserves regularity. Hence µ-calculus defin-
able sets are regular.

19

