SPATIO-TEMPORAL SEGMENTATION AND REGIONS TRACKING OF HIGH DEFINITION VIDEO SEQUENCES USING A MARKOV RANDOM FIELD MODEL - Archive ouverte HAL
Communication Dans Un Congrès Année : 2008

SPATIO-TEMPORAL SEGMENTATION AND REGIONS TRACKING OF HIGH DEFINITION VIDEO SEQUENCES USING A MARKOV RANDOM FIELD MODEL

Résumé

In this paper, we proposed a Markov Random field sequence segmentation and regions tracking model, which aims at combining color, texture, and motion features. First a motion-based segmentation is realized. The global motion of the video sequence is estimated and compensated. From the remaining motion information, the motion segmentation is achieved. Then, we use a Markovian approach to update and track over time the video objects. By video object, we mean typically, a spatio-temporal shape characterized by its texture, its color, and its motion. The temporal map is updated and propagated using our Markov Random Field segmentation model to keep consistency in video objects tracking.
Fichier principal
Vignette du fichier
ICIP2008-brouard-versionCorrigee.pdf (174.43 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00343618 , version 1 (02-12-2008)

Identifiants

  • HAL Id : hal-00343618 , version 1

Citer

Olivier Brouard, Fabrice Delannay, Vincent Ricordel, Dominique Barba. SPATIO-TEMPORAL SEGMENTATION AND REGIONS TRACKING OF HIGH DEFINITION VIDEO SEQUENCES USING A MARKOV RANDOM FIELD MODEL. International Conference on Image Processing - ICIP 2008, Oct 2008, San Diego, United States. pp.1552 - 1555. ⟨hal-00343618⟩
283 Consultations
101 Téléchargements

Partager

More