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ABSTRACT
In this paper1, we propose a Markov Random Field sequence
segmentation and regions tracking model, which aims at com-
bining color, texture, and motion features. First a motion-
based segmentation is realized. Namely the global motion of
the video sequence is estimated and compensated. From the
remaining motion information, a rough motion segmentation
is achieved. Then, we use a Markovian approach to update
and track over time the video objects. The spatio-temporal
map is updated and compensated using our Markov Random
Field segmentation model to keep consistency in video ob-
jects tracking.

Index Terms— Video Motion-Based Segmentation, Mar-
kov Random Fields, Regions Tracking.

1. INTRODUCTION

Image segmentation and video objects tracking are the sub-
jects of large researches for video coding. For instance, the
new video standard H.264 allows a wide choice of coding
strategies, one possible is to use adapted coding parameters
for the video object during several frames.

To track spatio-temporal objects in a video sequence, they
need to be segmented. By video object, we mean typically, a
spatio-temporal shape characterized by its texture, its color,
and its own motion that differs from the global motion of
the shot. In the literature, several kinds of methods are de-
scribed, they use spatial and/or temporal [1] information to
segment the objects. In the case of spatial information, good
segmentation results have been obtained using Markov Ran-
dom Fields (MRF) [2, 3]. Indeed, the MRF define a class of
statistical models which enable to describe both the local and
global properties of segmentation maps. The methods based
on temporal information need to know the global motion of
the video to perform an effective video objects segmentation.
Horn and Schunck [4] proposed to determine the optical flow
between two successive frames. Otherwise, the motion para-
metric model of the successive frames can be estimated [5].

1This research was carried out within the framework of the ArchiPEG
project financed by the ANR (convention N°ANR05RIAM01401).

Once the motion model is known, the global motion is back-
compensated, and only the moving objects remain with their
local motion information. Studies in motion analysis have
shown that motion-based segmentation would benefit from
including not only motion, but also the intensity cue, in par-
ticular to retrieve accurately the regions boundaries. Hence
the knowledge of the spatial partition can improve the relia-
bility of the motion-based segmentation. As a consequence,
we propose a MRF model combining the motion information
and the spatial features of the sequence to achieve an accurate
segmentation and video objects tracking.

In previous works, we used a motion information per block,
and for a group of frames (GOF), to estimate the global mo-
tion and achieve the motion-based segmentation [6]. First
the method, considering several successive reference frames,
estimates the motion of spatio-temporal tubes, with the as-
sumption of a uniform motion along the GOF. Next a motion
vectors accumulation permits to estimate robustly the param-
eters of an affine motion model (the global motion). Finally
the global motion is compensated, and the motion segmen-
tation is achieved from the compensated motion vectors. In
this paper, we propose a MRF model which aims at combin-
ing color, texture, and motion features. This model permits
to improve an initial motion-based segmentation, and to com-
pute video objects with accurate boundaries. Moreover the
spatio-temporal map from the previous GOF is updated and
compensated using our MRF model to proceed and keep con-
sistency in video objects tracking.

In the following section, we briefly present our motion-
based segmentation method based on spatio-temporal tubes.
In section 3, we describe the MRF sequence segmentation and
regions tracking algorithm. Finally, we show the simulation
results in section 4, and we conclude in section 5.

2. MOTION-BASED SEGMENTATION

2.1. Motion estimation based on tubes

To extract motion information correlated with the motions of
real life objects in the video shot, we consider several succes-
sive frames and we make the assumption of a uniform motion



between them. Taking account of perceptual considerations,
and of the frame rate of the next HDTV generation in progres-
sive mode, we use a GOF composed of 9 frames [6, 7]. The
goal is to ensure the coherence of the motion along a percep-
tually significant duration.

Figure 1 illustrates how a spatio-temporal tube is esti-
mated considering a block of the frame Ft at the GOF center:
a uniform motion is assumed and the tube passes through the
9 successive frames such as it minimizes the error between
the current block and those aligned.
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Fig. 1. Spatio-temporal tube used to determine the motion
vector of a given block.

We get a motion vectors field with one vector per tube, and
one tube for each block of the image Ft. This motion vectors
field is more homogeneous (smoother) and more correlated
with the motion of real life objects, this field is the input of
the next process: the global motion estimation.

2.2. Robust global motion estimation

The next step is to identify the parameters of the global mo-
tion of the GOF from this motion vectors field. We use an
affine model with six parameters. First, we compute the deriva-
tives of each motion vector and accumulate them in histograms
(one respective histogram for each global parameter). The
localization of the main peak in the histogram produces the
value retained for the parameter. Then, once the deformation
parameters have been identified, they are used to compensate
the original motion vectors field. Thus, the remaining vectors
correspond only to the translation motions. These remain-
ing motion vectors are then accumulated in a two dimensions
(2D) histogram. The main peak in this 2D histogram repre-
sents the values of the translation parameters (for more de-
tails, the readers are invited to see our previous work [6]).

2.3. Motion segmentation

In the previous 2D accumulation histogram used to estimate
the global motion translation, we assume that each peak rep-
resents an object motion, so we do not retain only the main
peak but all of them to segment the GOF.

For all the positions connected to the main peak, a local
gradient is computed. All the connected cells, for which the
gradient is positive, are considered as belonging to the peak.

Then, a new maximum is detected among all the remaining
(not labeled) cells, and the algorithm is iterated as long as
there remain non null cells without label. If one cell is labeled
as belonging to several peaks, it is linked to the closest peak.
We get here a rough segmentation map per GOF. Our goal
becomes, using a MRF, to improve those initial segmentation
maps and to link them temporally.

3. MARKOV RANDOM FIELD MODEL

We express the markovian proprieties of a field by an explicit
distribution.

Let E = {Es, s ∈ S} be the label field defined on the lat-
tice S of sites s, in our case each site is associated with a tube,
and the sites of a segmented region (corresponding to a mov-
ing object through successive GOF) are labelled similarly. Let
O = {Os, s ∈ S} be the observation field. Realizations of
fields E (respectively O) will be denoted e = {es, s ∈ S}
(respectively o = {os, s ∈ S}). Let Λ (respectively Ω) be the
set of all possible realizations of E (respectively label config-
urations e). With respect to the chosen neighborhood system
η = {ηs, s ∈ S}, (E,O) is modeled as a MRF. The optimal
label field ê is derived according to the Maximum A Posteri-
ori (MAP) criterion. The Hammersley-Clifford theorem [8]
established the equivalence between Gibbs distribution and
the MRF, the optimal label configuration is then obtained by
minimizing a global energy function U(o, e):

ê = arg min
e∈Ω

U(o, e) (1)

Due to the Markovian property of the field, the energy func-
tion is written as the sum of elementary potential functions
defined on locally structures called cliques [9]:

U(o, e) =
∑
c∈C

Vc(o, e), (2)

where C is the set of cliques from S associated to the neigh-
borhood η. The potential function Vc is locally defined on the
clique c and gives the local interactions between its different
elements. The form of the potential function Vc is problem
dependent and defines its local and global properties.

3.1. Potential functions

Considering one GOF, a segmented region should respect a
spatial coherence, it means that the segmented region (con-
stituted of tubes) should be locally homogeneous and com-
pact. The corresponding potential function is related to a
Markov model associated to an eight-neighborhood system.
The model favours spatially homogeneous regions, by the
choice of the potential function:

∀t ∈ ηs

{
Vcs = βs if et 6= es,

Vcs = −βs if et = es,



with βs > 0. In our case, C is the set of spatial second or-
der cliques. Each clique corresponds to a pair of neighboring
and connected tubes:

W1(e) =
∑

cs∈Cs

Vcs(es, et),

where Cs represents the set of all the spatial cliques of S.

3.1.1. Color features

Inside a GOF, we want to compare the color distributions of a
site with the other regions. Many methods are adapted to the
discrete case (intersection, L2, χ2, ...), we have chosen the
Bhattacharyya coefficient based on similarities computation.

The discrete densities of the color distributions of the cur-
rent site s, ŝ = {ŝu}u=1..m, and of the region R(es) consti-

tuted by the sites labeled es, R̂(es) =
{

R̂(es)u

}
u=1..m

, are
computed from the color histogram with m bins and consid-
ering only the frame Ft at the GOF center. The corresponding
Bhattacharyya coefficient is then defined by:

ρc = ρc(R̂(es), ŝ) =
∑m

u=1

√
R̂(es)u ˆ.su.

From this coefficient, we deduce a distance whose the
value is between [−1; 1]: dc = 2 × ρc(R̂(es), ŝ) − 1. The
potential W2 for the color features is defined as follows:

W2(es, os, o(R(es)) =
∑
s∈S

2× ρc(R̂(es), ŝ)− 1.

3.1.2. Texture features

Inside a GOF, in order to compare the image textures, the
two different spatial gradients (∆V , ∆H) are used, each one
is computed for each pixel and each region of the frame Ft

at the GOF center. In practice, we use Sobel filters, and the
Bhattacharyya coefficient to compute similarities. Namely,
the discrete densities of the texture distributions of the current
site s, ŝ = {ŝu}u=1..n, and of the region R(es) formed by the

sites labelled es, R̂(es) =
{

R̂(es)u

}
u=1..n

, are calculated
from the texture histogram with n bins. The Bhattacharyya
coefficient for the texture distributions is defined by:

ρt = ρt(R̂(es), ŝ) =
∑n

u=1

√
R̂(es)u ˆ.su.

The potential W3 for the texture features is given by:

W3(es, os, o(R(es)) =
∑
s∈S

2× ρt(R̂(es), ŝ)− 1.

3.1.3. Motion features

Inside a GOF, the main criterion for the segmentation is often
the motion: for a given region, the motion vectors of its tubes
should have close values. Therefore we want to associate an

energy to assess the difference between the motion of a tube
and the motion of a region.

In the section 2, we explained how the motion vector of a
tube is estimated, and how each region is located thanks to a
peak in a 2D accumulation histogram. So the motion vector
associated to a peak is also the estimated motion of the region
in the GOF. The distance between the motions of a tube, and a
region, according to their norms and their directions, follows:

dm =

−−→
MVs ×

−−−−−→
MVR(es)

max(
∥∥∥−−→MVs

∥∥∥ ,
∥∥∥−−−−−→MVR(es)

∥∥∥)
,

where
−−→
MVs, and

−−−−−→
MVR(es) are respectively the motion

vectors of the site s, and of the region R(es) formed by the
sites labelled es. The corresponding potential function W4 is
given by:

W4(es, os, o(R(es)) =
∑
s∈S

−1× dm.

3.1.4. Regions tracking

In order to track the regions between two successive GOF, we
compare their segmentation maps. Exactly the segmentation
map of the previous GOF, is first compensated using all of
the motion information (global motion, motion vectors of its
objects). Next we compare the labels of the regions in the
previous and in the current GOF. A metric based on the color,
the texture, and the recovery between the regions, is used.
For the color, and the texture, we adapt the Bhattacharyya
coefficients detailed in sub-sections 3.1.1 and 3.1.2. A region
of the current GOF takes the label of the closest region of the
previous GOF (if their distance is small enough).

The compensated map of the previous GOF is used to im-
prove the current map through the potential function:{

Vct = βt if es(t) 6= es(t− 1),

Vct = −βt if es(t) = es(t− 1),

with βt > 0, and where es(t), and es(t − 1) are respec-
tively the labels of the site for the current, and the motion
compensated previous GOF. Here C is the set of temporal
second order cliques. Each clique corresponds to a pair of
adjacent tubes between the previous and the current GOF:

W5(e(t)) =
∑

ct∈Ct

Vct(es(t), es(t− 1)),

where Ct is the set of all the temporal cliques of S.
Inside a GOF, when the motion of the potential objects

are very similar, the motion-based segmentation failed to de-
tect them. In this case, the initial segmentation map for our
MRF segmentation model contains no information, hence, we
use the motion compensated map from the previous GOF as
initialization for our MRF segmentation model. This process
allows to keep consistency for video objects tracking through
the sequence GOF.



3.2. Energy minimization

The global energy function U(o, e) is expressed as:

U(o, e) = α1.W1 + α.W2 + α3.W3 + α4.W4 + α5.W5,

where α1, α2, α3, α4, and α5 are respectively the weights for
the potential functions W1, W2, W3, W4, and W5.

The rough maps obtained from the motion-based segmen-
tation are used as initialization for the optimization process.
The tubes located at the borders of the moving objects, or in
the uniform areas have the highest probability to be misclas-
sified, they represent the unstable sites. We use a stack of
instability to determine the visit order of the unstable sites.

First, we check the stability of each site (i.e. if the en-
ergy associated with the current label is minimal). If the en-
ergy variation for the site equals zero, ∆U(s) = 0, the site
is stable. On the contrary, we compute the energy variation:
∆U(s) = U(s, ec) − U(s, es), where ec, and es are respec-
tively the current label and the new label of the site s which
minimizes the energy. Next a decreasing instability stack is
built. Its first site (the most unstable), is updated with the new
label which minimizes the energy. The energies of the neigh-
boring sites are modified too, so the instability stack has to be
updated at each iteration.

4. SIMULATION RESULTS

We used one 1080p (Tractor), and two 720p (Shields and New
mobile calendar) HD sequences from SVT [10]. These video
sequences contain one or several moving objects.

Table 1 presents the number of the detected moving ob-
jects using only the motion-based segmentation (MBS), and
with our MRF model. Although, the method is improved,
note that for the Tractor sequence it failed to detect all of
them. Indeed, at the end of this sequence, the tractor is too
small (because of a camera zoom out) to be detected.

Sequence MBS MRF model
Tractor 33% 84%

New Mobile Calendar 85% 92%
Shields 94% 100%

Table 1. Ratio of detected moving objects.

Figure 2 shows the segmentation maps using the only MBS
(top row), and with our MRF model (bottom row) for three
successive GOF of the Tractor sequence. The moving objects
are correctly detected with the MBS, but the labels between
the GOF are incoherent (the same object is labellized differ-
ently). With our MRF model, the boundaries of the detected
moving objects are more regular than those obtained with the
MBS. Moreover, video objects tracking is successful with our
MRF model, since the tractor label is the same between the
three GOF.

Fig. 2. Segmentation maps and tracking for Tractor (GOF 14,
15, 16) using the MBS (top row) and our MRF model (bottom
row).

5. CONCLUSIONS

In this paper, we have presented a Markov Random Field
(MRF) model to segment and track video objects. Our MRF
model combines color, texture, and motion features. First,
a motion-based segmentation (MBS) is realized for a GOF
of nine frames. Next the MRF model is applied to improve
the MBS using spatial features, and to keep consistency be-
tween the successive GOF segmentation maps. A video ob-
jects tracking is then achieved.
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