Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions. - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2008

Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions.

Stéphane Gerbi
Belkacem Said-Houari
  • Fonction : Auteur
  • PersonId : 854186

Résumé

In this paper we consider a multi-dimensional wave equation with dynamic boundary conditions, related to the Kelvin-Voigt damping. Global existence and asymptotic stability of solutions starting in a stable set are proved. Blow up for solutions of the problem with linear dynamic boundary conditions with initial data in the unstable set is also obtained.
Fichier principal
Vignette du fichier
Gerbi_Said_Asymptotic.pdf (244.67 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00339258 , version 1 (17-11-2008)
hal-00339258 , version 2 (07-04-2010)
hal-00339258 , version 3 (16-07-2011)

Identifiants

Citer

Stéphane Gerbi, Belkacem Said-Houari. Asymptotic stability and blow up for a semilinear damped wave equation with dynamic boundary conditions.. 2008. ⟨hal-00339258v1⟩
175 Consultations
340 Téléchargements

Altmetric

Partager

More