Normals and Curvature Estimation for Digital Surfaces Based on Convolutions - Archive ouverte HAL
Communication Dans Un Congrès Année : 2008

Normals and Curvature Estimation for Digital Surfaces Based on Convolutions

Résumé

In this paper, we present a method that we call on-surface convolution which extends the classical notion of a 2D digital filter to the case of digital surfaces (following the cuberille model). We also define an averaging mask with local support which, when applied with the iterated convolution operator, behaves like an averaging with large support. The interesting property of the latter averaging is the way the resulting weights are distributed: they tend to decrease following a “continuous” geodesic distance within the surface. We eventually use the iterated averaging followed by convolutions with differentiation masks to estimate partial derivatives and then normal vectors over a surface. We provide an heuristics based on [14] for an optimal mask size and show results.
Fichier principal
Vignette du fichier
Fourey-DGCI-08.pdf (510.72 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00333772 , version 1 (31-03-2015)

Identifiants

Citer

Sébastien Fourey, Rémy Malgouyres. Normals and Curvature Estimation for Digital Surfaces Based on Convolutions. 14th IAPR International conference, DGCI 2008, Apr 2008, Lyon, France. pp.287-298, ⟨10.1007/978-3-540-79126-3_26⟩. ⟨hal-00333772⟩
160 Consultations
798 Téléchargements

Altmetric

Partager

More