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Abstract. In this paper, we present a method that we call on-surface

convolution which extends the classical notion of a 2D digital filter to
the case of digital surfaces (following the cuberille model). We also define
an averaging mask with local support which, when applied with the iter-
ated convolution operator, behaves like an averaging with large support.
The interesting property of the latter averaging is the way the resulting
weights are distributed: they tend to decrease following a “continuous”
geodesic distance within the surface. We eventually use the iterated av-
eraging followed by convolutions with differentiation masks to estimate
partial derivatives and then normal vectors over a surface. We provide
an heuristics based on [14] for an optimal mask size and show results.

1 Introduction

Estimation of geometrical properties and quantities of objects known through
their digitizations is an important goal of discrete geometry. One of the classical
problems is simply to measure the length of a curve (or a perimeter) in the
digital plane [6, 4]. One may also quote the estimation of tangents or normals to
a curve [11], normal vectors over a surface [12], or area of a digital surface [3, 9,
20].

In 2D, a whole set of methods rely on the digital straight segments recognition
algorithm [5] used to find maximal line segments in a curve, which may in turn be
used to estimated the curve’s length or its tangent vectors [11]. These methods
have been extended to the 3D case with digital plane recognition [17]. Directional
tangent estimation based on segments recognition was used in [19] to compute
normal vectors on a digital surface and in [10] for the nD case. All of these
methods are sensitive to noise.

In the case of digital surfaces, another method was introduced by Papier
and Françon ([16, 15]) to estimate the normal vector field. It is based on a
weighted averaging of the canonical normals in a neighborhood of each sur-
fel. Their method generalizes to large neighborhoods the approach proposed by
Chen et al. in [2] and is very close to the one we propose here, although it differs
for at least two points: First, the size of the neighborhood taken into account,
called the “order of the umbrellas” in their paper, is a parameter of the method



and no hints to find an optimal size is provided. Here, we rely on a new theo-
retical result in the 1D functional case to set this parameter. Tests on spheres
and tori show that the chosen size provides experimental convergence (see Sec-
tion 4.1). Second, umbrellas in Papier’s method grow following a breadth-first
traversal of the surfels v-adjacency graph, whereas our method may be seen as
the result of an averaging process using masks which grow in a more geodesic

and isotropic way (see Section 4.2).

The normal estimation method introduced here is based on the notion of
on-surface convolution (Section 3) which extends to digital surfaces the classical
2D filters used in image processing. Using an averaging mask defined locally, we
apply an iterated convolution operation on the centers of the surfels. Then, we
use two orthogonal differentiation operators on the resulting centers to estimate
partial derivatives, and by a cross product we obtain normal vectors. As previ-
ously mentioned, we follow the criterion given in [14] to set the optimal number
of iterations depending on the digitization step (voxel size).

In the last section, we consider the problem of curvature estimation, which
requires second order derivatives estimation, and show an encouraging experi-
ment.

2 Digital objects and discrete surfaces

2.1 Digital objects

In this paper, we simply call a digital object a subset of Z
3, the classical three

dimensional grid. Such an object is seen as a set of unit cubes called object voxels

centered on points with integer coordinates. Background voxels are voxels that
do not belong to the object.

2.2 Digital surface

A digital object can be visualized slice per slice, i.e., as a series of 2D binary
images. More often, what is rendered is a 2D view of its external surface (see [1,
2]). In this case, the basic rendering primitives are the surfels. Surfels are unit
squares that are shared by two 6-adjacent voxels: one belonging to the object and
one belonging to the background. There are exactly six types of surfels according
to the direction of their normal vectors. Thus, a surfel can be uniquely defined by
the data of its center’s coordinates and its orientation. In the sequel, a surfel is
a pair (p,n) where p ∈ R

3 (the center) and n ∈ {(±1, 0, 0), (0,±1, 0), (0, 0,±1)}
(the normal vector). Eventually, a digital surface is a set of surfels which is the
set of all the surfels of a digital object.

We will use in the sequel the two functions σ and ν which associate to a surfel
s = (p,n), respectively, its centre σ(s) = p and its normal vector ν(s) = n.
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2.3 Adjacency relations between surfels an surfels neighborhoods

We can define two adjacency relations between surfels: the e-adjacency and the
v-adjacency relations.

As depicted in Figure 1, a surfel x might share one of its four edges with
at most three other surfels. In the cases depicted in Figure 1(a)(b)(c), only one
surfel y shares the bold edge with x. We say that this surfel y is e-adjacent to
x (y is also called an e-neighbor of x). In the case of Figure 1(d), we choose3 to
define the surfel y as the e-neighbor of x associated with the bold edge. Thus,
we have defined with examples the e-adjacency relation (“e” for edge) so that a
surfel has exactly four e-neighbors: one per edge.

x
y

(a)

y x

(b)

x
y

(c)

y
x

(d)

Fig. 1. The e-neighbor y of a surfel x given one of its edges (bold line).

Next, we define a loop in a digital surface Σ as an e-connected component
of the set of the surfels of Σ which share a given vertex w. For example, if Σ is
the surface of the object depicted in Figure 2(a) (which is made of three voxels),
then the vertex w defines two loops: one that contains the six gray surfels, and
another one in the back with three surfels. Eventually, we say that two surfels
are v-adjacent (v for vertex ) if they belong to a common loop of Σ.

These two adjacency relations allow us to define the e-neighborhood (resp.
v-neighborhood) of a surfel x denoted by Ne(x) (resp. Nv(x)) as the set of surfels
that are v-adjacent (resp. e-adjacent) to x. Figure 2(b) shows an example of a
v-neighborhood.

w

(a)

x

(b)

Fig. 2. (a) A loop of surfels (in gray), (b) A v-neighborhood.

3 By this choice, the interior of a surface component is 6-connected [7].
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3 On-surface convolution

The work presented in the next sections illustrates the use of on-surface convo-

lution, which we introduce here. In the sequel of the paper, Σ is a digital surface
and S is a vector space over R. We define the space of digital surface filters over

Σ as the set of functions from Σ × Σ to R.

Definition 1 (Convolution operator). For f : Σ 7→ S and F : Σ × Σ 7→ R,

we define the operator Ψ as follows:

Ψf,F : Σ −→ S

x 7−→
∑

y∈Σ

F (x, y) · f(y) (1)

Intuitively, Ψ acts like a convolution of the values of f on the surface with a
convolution kernel whose values should depend on the relative positions of two
surfels. We also define the iterated operator Ψ (n).

Definition 2 (Iterated convolution operator). The iterated convolution
operator is defined for n ∈ Z by:

{

Ψ
(0)
f,F = f

Ψ
(n)
f,F = Ψ

Ψ
(n−1)
f,F

,F
if n > 0.

(2)

Next, we define an averaging and two derivative filters which we will use in
Section 4.1 to estimate the normal field on a digital surface.

3.1 The averaging filter

We define here a local averaging mask Wavg : Σ × Σ 7→ R. This mask should
be seen as a wrapping of the 2D classical mask (Figure 3(a)) which follows the
local shape of the digital surface. We define this wrapping in such a way that the
weights remain balanced, the way they are in the 2D pattern, but considering
the local orientation within a v-neighborhood.

Let x and y be two surfels of Σ such that y ∈ Nv(x). If y is e-adjacent to x,
then y has exactly two e-neighbors in Nv(x), say s and t. We define δx(y) as the
number of surfels in {s, t} which are e-adjacent to x. If y is v-adjacent but not
e-adjacent to x then there is a single loop L of Σ that contains both x and y. In
this case, we define δx(y) = card(L) − 3.

The number δx(y) is used to take into account the number of surfels in a
loop containing x which are not e-adjacent or equal to x. Within a loop, all
these surfels will end up with a total contribution of 1

16 . If there are no such
surfels, the weight 1

16 is split among the two n-neighbors of x in the loop.
Now, let x be a surfel of Σ. For any surfel y ∈ Σ we define the weight

Wavg(x, y) as follows:
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Wavg(x, y) =



















1
4 if y = x,
1
8 + δx(y)

32 if y ∈ Ne(x),
1

16·δx(y) if y ∈ Nv(x) \ Ne(x),

0 if y /∈ Nv(x).

(3)

One can check that for all x ∈ Σ, we have
∑

y∈Σ

Wavg(x, y) = 1.

See Figure 3(b) for an example of a v-neighborhood and the associated values
of Wavg.
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(a) A 2D mask.
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(b) A surfel x (in gray)
and the values of 16 ·
Wavg(x, y) for the sur-
fels y of Nv(x) ∪ {x}.

s

0
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1

E1(s)
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(c) Ordering of vertices and
edges for a given surfel s.

Fig. 3. Illustrations of the masks definition.

3.2 The first order derivative filters

We introduce here two directional derivative masks which may be used with the
convolution operator to obtain two orthogonal differentiation operators.

For each surfel s of Σ we define a numbering of the surfel vertices and edges as
illustrated by Figure 3(c), following the coherent orientation around the outward
normal. We denote by Ei(s) the e-neighbor of s that shares with s its ith edge.
Then, we define the derivative masks Du(x, y) and Dv(x, y) for x, y ∈ Σ as
follows:

Du(x, y) =











1
2 if y = N0(x),

− 1
2 if y = N2(x),

0 otherwise.

Dv(x, y) =











1
2 if y = N1(x),

− 1
2 if y = N3(x),

0 otherwise.

(4)

Given the derivative masks Du and Dv, we may define two derivative oper-
ators Ψf,Du

and Ψf,Dv
which act on a function f defined on Σ.
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4 Normal estimation

In this section, we address the problem of estimating the normal vectors on the
surface of a digital object. This estimation is achieved using iterated convolu-
tions of the surfel centers with the averaging mask Wavg, followed by a step of
differentiation using the derivative filters Du and Dv defined in Section 3.2.

4.1 Surface normal estimation

For different purposes, such as shading methods for visualization or for area
estimation, it is interesting to compute normal vectors on the surface of a digital
object. In so doing we expect that the computed normals will be as closed as
possible to the normals on the surface of a continuous object from which the
digital object could have been obtained by a digitization process. In other words,
given a continuous object, we expect that the estimated normals can get as
close as required to the real normals as soon as the digitization step is chosen
sufficiently small. Roughly speaking, this property is what is called multigrid

convergence in the literature. Several surface normal estimation methods have
been proposed, among which we may cite [13, 19, 10] is past DGCI’s, but no
method has been proved to be convergent in that sense.

Here, we show that the normal vectors of a digital surface can also be es-
timated by first averaging the positions of the surfel centers using the iterated
convolution operator, then computing approximations of two partial derivatives
to obtain vectors in the tangent space to the surface, and finally computing a
normal vector by a simple cross product of the tangent vectors.

More formally, using the iterated convolution operator Ψ , the averaging mask
Wavg, and the derivative masks Du and Dv we define a function Γ (n) : Σ −→ R

3

for n ∈ Z such that Γ (n)(s) is the estimated normal vector of Σ at the center of
s (after n on-surface convolutions). We define the function Γ (n) for n ∈ Z by:

Γ (n)(s) =
∆

(n)
u (s) ∧ ∆

(n)
v (s)

‖∆
(n)
u (s) ∧ ∆

(n)
v (s)‖

with ∆(n)
u = Ψ

Ψ
(n)
σ,Wavg

,Du
(resp. for ∆(n)

v ) (5)

As the initial averaging process is iterated, the size of the neighborhood taken
into account grows accordingly and the precision of the estimate increases as
we get closer to the optimal number of iterations. (This number is discussed in
Section 4.3.)

From the definition of the operator Ψ (n), we see that Γ (n)(s) is the result
of a computation which involves all the surfels of Σ whose distance to s is at
most n in the v-adjacency graph of Σ. In fact, the size of the neighborhood
taken into account when computing Γ (n)(s) grows with n but the weights tend
to follow a geodesic distance which does not coincide with the distance in the
v-adjacency graph. This point, which we claim is a good point, is discussed in the
next section. (The way the weights are distributed when the number of iterations
increases is illustrated by Figures 5(b) and 4(b).) We will present in Section 4.3
the results of some experiments.
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4.2 Comparison with Papier’s averaging process

In [16, 15], Papier et al. define averaging weights on possibly large neighborhoods
obtained using a breadth-first visiting algorithm of the surfels v-adjacency graph.
Their approach generalizes the one of [2] who used only the only e-neighborhood
to estimate the normals by averaging the elementary normals (among the six
possible ones). Both methods are based on the averaging of the canonical normals
ν(s) of the surfels to estimate the exact normals. This point slightly differs from
our method since we are not averaging the normal vectors but simply the surfel
centers.

Furthermore, when considering a large neighborhood in an averaging process,
one should expect that the boundary of the neighborhood is equidistant to its
center, according to the geodesic distance within the continuous surface which
has been digitized. The weights should also decrease according to this geodesic
distance. As depicted in Figure 5(a) on a digitized plane with normal vector
(1, 1, 1), as well as in Figure 4(c) on a digitized paraboloid, neighborhoods ob-
tained by a breadth-first traversal of the surfels graph do not share the former
property. Therefore, we think that the neighborhoods used by Papier et al. are
not optimal.

In our case, the neighborhood taken into account by the averaging process
grows after iterations of convolutions with a local mask, designed to adapt itself
to the local geometry of the surface (Section 3.1). Although the actual size of the
masks resulting of iterated convolutions also follow the v-adjacency graph, we
observe that the weights in these masks tends to share the above mentioned prop-
erties (isotropy and decreasing according to a ”continuous” geodesic distance).
In order to illustrate how the averaging mask grows, we use a diffusion process:
with S = R we choose a surfel s0 ∈ Σ and define the function δs0

: Σ −→ R such

that δs0
(s0) = 1 and δs0

(s) = 0 for s ∈ Σ \ {s0}. Then, we compute Ψ
(n)
δs0

,Wavg

for a given n. A result of this diffusion process that we call an impulse response

of the averaging filter Ψ
(n)
f,Wavg

is depicted in Figure 5(b) for the same plane as
mentioned previously. Another example is given on the paraboloid depicted in
Figure 4(b) with the surfel s0 at the saddle point, where one can get convinced
that the impulse response of our iterated convolution mask behaves as if follow-
ing a geodesic distance function on the surface.

4.3 Experiments

We have evaluated the precision of the estimation that can be achieved with our
method. For this purpose, we have used digitized spheres and tori with several
radii and measured the average angular error between the estimated and the
exact normal vectors for all surfels. In these experiments, we use a number n of
convolution iterations inspired by the result of [14] (Theorem 1) for continuous
functions from R to R known through their digitizations. Following the latter
result, if h is the width of the pixels used for the digitization process, then a
convergence at rate h

2
3 for the estimation of the first derivative of the function

may be obtained by using a convolution mask with a width w = ⌊h−
4
3 ⌋. Given
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(a) (b) (c)

Fig. 4. (a) View of a paraboloid shaded using normals estimated with our method. (b)
Response of the iterated averaging filter over the paraboloid compared with a breadth-
first traversal (c). (The volume size is 150 × 150 × 150 and has 104926 surfels.)

(a) Breadth-first traversal. (b) Iterated convolution response.

Fig. 5. Breadth-first traversal of the surfels graph and convolution over a digitized
plane x + y + z = 0.

this width, we deduce the number n of convolution iterations required when using
the mask Wavg (see Section 3.1): n = w

2 if w ∈ 2Z and n = w−1
2 if w + 1 ∈ 2Z.

The results of our experiments are presented in Figure 6. For Figure 6(a), we
have used digital spheres with radii from 10 to 100 (i.e. h goes from 1

20 to 1
200 ).

It appears clearly that the method achieves a better estimation when the size
of the sphere increases (i.e. the digitization step decreases). This tends to show
that our estimator is multigrid convergent.

As a comparison, tests conducted by Papier in [15] do not clearly show an
improvement of the precision when the radius of the sphere increases. Further-
more, they only used umbrellas of order 1 to 5. It is however clear that the size
of the mask should be set according to the resolution, as we do here. With the
approach mentioned in the introduction, the best result in [10] is obtained on a
sphere with radius 100 and an average error of 1.51◦ (std. dev. 2.34), when the
average error of our method is 0.58◦ (std. dev. 0.27). On a sphere with radius
50, they obtain 2.19◦ (std. dev. 3.46) when we have 0.85◦ (std. dev. 0.33). The
earlier paper by Tellier and Debled-Rennesson [19] reports the best average error
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of 2.84◦ (std. dev. 2.24) for a sphere with radius 25, when our method obtains
1.16◦ (std. dev. 0.47).

Furthermore, spheres are not general enough to put to the test a surface
normal estimator. This at least because a sphere has a constant and positive
Gaussian curvature. Therefore, we have tested our method on several tori with
increasing radii, rotated along the three axes. Tori are nice for this test because
they have both positive and negative Gaussian curvatures. The results are de-
picted in Figure 6(b), where each torus had a small radius of half its large one.
Again, the average error and its standard deviation decrease with an increasing
resolution.

 0.1

 1

 10

 20  40  60  80  100

Average angular error
Standard deviation

(a) Spheres with increasing radii.

 0.1

 1

 10

 10  20  30  40  50  60

Average angular error
Standard deviation

(b) Tori with increasing large and small
radii. (Large radius on the horizontal axis.)

Fig. 6. Average angular error, in degree and using a logarithmic scale, of the estimated
normals on spheres and tori. The error, on each surfel, is computed as the angle between
the estimated normal vector and the direction from the center of sphere to the center
of the surfel (resp. from the skeleton of the torus).

5 Curvature estimation

In this section, we present an attempt to estimate second order quantities after a
similar averaging process as the one used to estimate normals. Although the the-
oretical work done in [14] shows that higher orders estimates may be computed
in a similar way for 1D digitized functions, it seems from our first experiments
that the precision is not so good when using on-surface convolution.

5.1 Second derivatives operators

Because the masks Du and Dv defined in Section 3.2 do not generally preserve
the orientations of the differentiations when applied to one surfel and one of its
neighbors, they should not be applied iteratively to compute second derivatives.
Hence, we need to define new differentiation operators.
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First, given a surfel s and its ith edge we denote by EEi(s) the e-neighbor of
Ei(s) which is not included in a loop containing s. Intuitively, EEi(s) is the next
surfel one encounters on the surface after Ei(s) when traveling in the direction
from s to Ei(s). Furthermore, given the jth vertex of s we denote by EV j

i (s)
the e-neighbor of Ni(s) that shares with s its vertex j. (See Figure 3(c) for
the vertices and edges ordering.) Eventually, for n ∈ Z and s ∈ Σ we define
(remember that σ(s) is the center of s)

∆
(n)
uu (s) =

(σ̃(n)(EE0(s))−σ̃(n)(s))−(σ̃(n)(s)−σ̃(n)(EE2(s)))
4

∆
(n)
vv (s) =

(σ̃(n)(EE1(s))−σ̃(n)(s))−(σ̃(n)(s)−σ̃(n)(EE3(s)))
4

∆
(n)
uv (s) =

(σ̃(n)(EV 0
0 (s))−σ̃(n)(EV 1

0 (s)))−(σ̃(n)(EV 3
2 (s))−σ̃(n)(EV 2

2 (s)))
4

where

σ̃(n) = Ψ
(n)
σ,Wavg

(6)

5.2 Curvature estimation

Given a regular parametric surface S : D ⊂ R
2 −→ R

3, (u, v) 7−→ S(u, v) =
(x(u, v), y(u, v), z(u, v)) where D is an open and connected subset of R

2, the
Gaussian (K) and mean (H) curvatures are defined as follows [18]:

K =
e.g − f2

E.G − F 2
H =

e.G − 2.f.F + g.E

2(E.G − F 2)
(7)

with

E =
∂S

∂u

∂S

∂u
, F =

∂S

∂u

∂S

∂v
, G =

∂S

∂v

∂S

∂v
, e = N ·

∂2S

∂u2
, f = N ·

∂2S

∂u∂v
, g = N ·

∂2S

∂v2

where N is the unit normal field over S.
For a given number n of averaging iterations, we approximate ∂S

∂u
as ∆

(n)
u ,

∂S
∂v

as ∆
(n)
v , ∂2S

∂u2 as ∆
(n)
uu , ∂2S

∂v2 as ∆
(n)
vv , ∂2S

∂v2 as ∆
(n)
uv , and N as Γ (n) (Eq. 5).

Eventually, we obtain an estimation of the Gaussian or mean curvature for each
surfel of a digital surface using equation 7.

5.3 Experiment

We have conducted an experiment with a large digitized torus which show that
the Gaussian curvature may be only roughly estimated. The torus had a 80 vox-
els large radius, and a 40 voxels small radius. Figure 7 shows the estimated and
exact Gaussian curvatures for all the surfels sorted according to their increas-
ing exact Gaussian curvatures. The size of the averaging mask to be used was
set according to the result of [14] about higher order derivatives (Theorem 3).
Actually, we divided the estimation process in two steps. First, an estimated
Gaussian curvature g̃1(s) for each surfel s ∈ Σ was computed after n

2 averaging
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Fig. 7. Estimated and exact Gaussian curvatures on a torus (large radius is 80, small
radius is 40). Surfels are numbered on the horizontal axis according to their increasing
exact Gaussian curvatures. The estimated values appear as a thick area because they
are plotted with lines and vary very quickly.

iterations (i.e., using Γ (n
2 ) and the operators ∆

(n
2 )

∗ as decribed before) and we

used g̃ = Ψ
(n

2 )
g1,Wavg

as the actual estimate. Figure 7 shows that the curvature is
only approximated.

6 Conclusion

We have defined an averaging operator based on a convolution over the surface of
a digital object, as well as directional derivative operators. When combined, these
operators may be used to estimate the normal vectors on the surface of a digitized
object. The implementation of this method is straightforward (compared with
methods which involve, say, DSS recognition). Furthermore, since it relies on
an averaging that may be seen as low-pass filtering, this method is less noise
sensitive, just as the planar case ([14]).

We also tackled the problem of curvature estimation. This estimator should
be investigated in the future since, as far as we know, there is no multigrid
convergent second derivative estimator known for digital surfaces.

The complexity of the convolution approach should also be compared with
existing geometric estimators.
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1999. In French.

13. A. Lenoir, R. Malgouyres, and M. Revenu. Fast computation of the normal vector
field of the surface of a 3-d discrete object. In DGCI’96: Proceedings of the 6th

International Workshop on Discrete Geometry for Computer Imagery, pages 101–
112. Springer-Verlag, 1996.

14. R. Malgouyres, F. Brunet, and S. Fourey. Binomial convolutions and derivatives
estimation from noisy discretizations. In Discrete Geometry for Computer Imagery,
Lecture Notes in Computer Science, 2008. This volume.

15. L. Papier. Polyédrisation et visualisation d’objets discrets tridimensionnels. PhD
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