Non-identity Learning Vector Quantization applied to evoked potential detection - Archive ouverte HAL
Communication Dans Un Congrès Année : 2008

Non-identity Learning Vector Quantization applied to evoked potential detection

Nanying Liang
  • Fonction : Auteur
  • PersonId : 854771

Résumé

This article presents a new computational intelligence technique for pattern recognition of graphic elements (e.g. event-related potential, auditory evoked potential, k-complex, spindle) embedded in electro-encephalographic signals. More precisely, we have extended the learning vector quantization (LVQ) algorithm by Kohonen to non-identity assignment to robustly detect evoked potentials in a noisy electro-encephalographic signals for brain-computer interfaces. The improved LVQ is obtained by optimizing its assignment layer through the minimum norm least square algorithm, the same scheme found in Extreme Learning Machine (ELM). The proposed LVQ is evaluated using the Wadsworth BCI datasets on P300 speller. The experimental results show that the proposed LVQ improved the performance with less computational units.
Fichier principal
Vignette du fichier
NEUROCOMP2008_0049.pdf (69.79 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-00331590 , version 1 (17-10-2008)

Identifiants

  • HAL Id : hal-00331590 , version 1

Citer

Nanying Liang, Laurent Bougrain. Non-identity Learning Vector Quantization applied to evoked potential detection. Deuxième conférence française de Neurosciences Computationnelles, "Neurocomp08", Oct 2008, Marseille, France. ⟨hal-00331590⟩
214 Consultations
300 Téléchargements

Partager

More