
HAL Id: hal-00331590
https://hal.science/hal-00331590

Submitted on 17 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Non-identity Learning Vector Quantization applied to
evoked potential detection
Nanying Liang, Laurent Bougrain

To cite this version:
Nanying Liang, Laurent Bougrain. Non-identity Learning Vector Quantization applied to evoked
potential detection. Deuxième conférence française de Neurosciences Computationnelles, ”Neuro-
comp08”, Oct 2008, Marseille, France. �hal-00331590�

https://hal.science/hal-00331590
https://hal.archives-ouvertes.fr

NON-IDENTITY LEARNING VECTOR QUANTIZATION APPLIED TO

EVOKED POTENTIAL DETECTION

Nanying Liang

INRIA / LORIA

Nancy, France

nanying.liang@loria.fr

Laurent Bougrain

INRIA / LORIA

Nancy, France

bougrain@loria.fr

ABSTRACT

This article presents a new computational intelligence

technique for pattern recognition of graphic elements

(e.g. event-related potential, auditory evoked potential, k-

complex, spindle) embedded in electro-encephalographic

signals. More precisely, we have extended the learning

vector quantization (LVQ) algorithm by Kohonen to non-

identity assignment to robustly detect evoked potentials in a

noisy electro-encephalographic signals for brain-computer

interfaces. The improved LVQ is obtained by optimizing its

assignment layer through the minimum norm least square

algorithm, the same scheme found in Extreme Learning

Machine (ELM). The proposed LVQ is evaluated using the

Wadsworth BCI datasets on P300 speller. The experimen-

tal results show that the proposed LVQ improved the per-

formance with less computational units.

KEY WORDS

Learning Vector Quantization, Extreme Learning Machine,

nonlinear separable problem, brain-computer interface,

evoked potential detection.

1 Introduction

Oddball paradigms are used by brain-computer interfaces

to generate event-related potentials (ERPs) on visual or au-

ditory targets on which the user focusses his attention. Each

target is associated to a specific action. The well-known

P300 speller is based on this principle [1]. The main prob-

lem is to be able to detect ERP in a noisy electroencephalo-

graphic signal recorded on human scalp. Averaging sev-

eral responses is usually necessary to detect ERPs. Thus,

methods based on “EP templates” are potentially interest-

ing to detect ERP. Templates can be obtained using aver-

aging techniques and clustering methods such as learning

vector quantization.

Learning vector quantization (LVQ) algorithms per-

form a supervised learning for a classification task. The

basic idea and some variants have been proposed by Koho-

nen [2]. The principle is to cluster input data using a com-

petitive learning without any spatial relationship between

codebook vectors. Each cluster is pre-assigned to a spe-

cific class. Thus, when a new pattern should be classified,

the method determines which cluster the pattern belongs

to and the assigned class. The main interests for this ma-

chine learning technique are both the robustness and the in-

terpretability. However for large-scale complex problems,

its performance can be further improved by optimizing the

way to combine the templates in its assignment stage rather

than just selecting one of them as the decision. More pre-

cisely, it could be interesting to overcome the simple iden-

tity function to determine classes from clusters. Thus, a

non-identity learning vector quantization will be described

in this article to obtain a more powerful linear assignment.

This improvement will be done using an extreme learning

machine algorithm.

Extreme learning machine (ELM) algorithm has a fast

training speed by just tuning its layer weights and left fixed

its randomly chosen input weights during the training pro-

cedure. This normally requires to use more layer units

than neural network algorithms which also tune the input

weights.

Thus, in this article we will combine both LVQ

and ELM algorithms to propose a new training algorithm

named, LVQ-ELM, in which LVQ focuses on tuning the

input weights, and ELM on tuning the layer weights. The

proposed algorithm should be able to improve the perfor-

mance of LVQ, and at the same time, uses less neurons than

ELM.

The following sections will describe both the LVQ

and ELM algorithms (section 2.1 and 2.2 respectively) and

how to combine them into a new algorithm named LVQ-

ELM (section 2.3). Then, we will present and discuss

experimental results obtained using the Wadsworth BCI

datasets on P300 speller (section 3). Finally, we will re-

sume and conclude on this work (section 4).

2 Methods

2.1 Learning Vector Quantization

LVQ1 Learning vector quantization (LVQ) algorithms

proposed by Kohonen [2] are supervised clustering meth-

ods designed for classification. A set of codebook vectors

V i with the same dimension than input X store the clus-

ter center-based vectors. Each cluster is pre-assigned to a

class. Several clusters can be assigned to the same class.

The percentage of clusters assigned to one class is usually

proportional to the percentage of training samples of this

class.

Figure 1. Generic architecture for LVQ algorithms

The architecture of these algorithms (Fig. 1) can be

defined as a two-layer neural network: a competitive layer

and an assignment layer. Each neuron of the competitive

layer (or hidden layer) corresponds to a cluster and is char-

acterized by a codebook vector V i. A classic competi-

tive step is used to determine which neuron is the clos-

est one to the current input using the following formula:

c = arg maxi{||X−V i||}. The closest neuron is regarded

as the winner neuron and others as loser neurons. The out-

put vector H of the competitive layer are computed as fol-

low: hi = winner − take − all(||X − V i||), where the

winner − take − all(.) function produces 1 as the out-

put of the winner neuron, and 0 for other neurons. These

competitive layer’s classes are transformed into target clas-

sifications through the layer weights W .

Each neuron of the second layer corresponds to a spe-

cific class. Thus, the weights of the second layer relate

clusters with classes. In the standard first version LVQ1,

each cluster is exclusively assigned to one class. For exam-

ple, suppose neurons i− 1, i, i + 1 in the competitive layer

are assigned to class k, then these competitive neurons will

have W weights of 1 that link to the class k output neuron

and 0 to other class output neurons. The output Y of LVQ1

can be written as:

Y = W ∗H = W ∗winner−take−alli(||X−V i||)
Thus Yk produces 1 if any of neurons i − 1, i, i + 1

wins the competition. Y is compared to the target vector T

to compute the accuracy.

In the learning procedure of LVQ1, W is fixed and

only the codebook vector of the winner neuron c is updated

according to the following rules:

V c(t + 1) = V c(t) + α(t)[X(t) − V c(t)] if X and

V c belong to the same class

V c(t + 1) = V c(t) − α(t)[X(t) − V c(t)] if X and

V c belong to different classes

where α is the learning rate. The application of LVQ1

requires to predefine the value of learning rate, the number

of competitive neurons and the number of epoches.

2.2 Extreme Learning Machine

Extreme learning machine (ELM) proposed by Huang et al.

[3] is for training single hidden layer feedforward neural

networks (SLFNs). [4] proved that SLFNs with randomly

generated addictive or radial basis function (RBF) neurons

can universally approximate any continuous functions in

a compact subset of the Euclidean space. Based on this

theory, only the output layer weights (W) is analytically

computed in the training procedure. In the ELM algorithm,

W is solved by the minimum norm least square solution:

W = H†T

where H is the hidden layer output vector, and T is

the target vector. The symbol † denotes the pseudo-inverse

operation. The networks with the smallest norm of output

weights likely achieve the best generalization performance

[5]. Simulations of ELM had been carried out with real-

world applications [4]. The simulation results showed that

ELM, with extremely fast training speed, obtained equal or

better generalization performance than support vector ma-

chine (SVM) [6], which is well-known for its generation

capability in the machine learning area. However, the size

of SLFNs (i.e., the number of hidden neurons) trained by

ELM is always larger than the algorithms that both opti-

mize the input and output weights simultaneously, and thus

requires more computing sources especially in the large-

scale complicate applications.

2.3 LVQ-ELM

From the previous two sections, we observe that, in the

training procedure, LVQ only updates the codebook vec-

tors V i and left the assigments W fixed; While ELM opti-

mizes W and let V i be randomly chosen and fixed. LVQ

works well in linear applications as ELM. However in non-

linear applications, the generalization performance of LVQ

is lower than ELM; While ELM requires large number of

hidden neurons and leads to out of memory problems. To

compensate these two algorithms to preserve the gener-

alization capability while without increasing the comput-

ing resources, we propose a new training algorithm named

LVQ-ELM. The principle of LVQ-ELM is to compute the

V i using the scheme of LVQ1 and to optimize W through

the same minimum-norm least-squares solution as ELM.

To derive the algorithm of LVQ-ELM, the output of LVQ

networks is repeated here:

Y = W ∗ winner − take − alli(||X − V i||)

If one directly applies the minimum-norm least-

square solution of W to the above equation, it can not im-

prove the performance of LVQ due to the competitive func-

tion filtering out the information necessary for fine tuning

the values of W. We propose to place the competitive oper-

ation after the weighted negative distance as follows:

Y = winner − take − alli(W ||X − V i||)

The output does not change. Now, we can introduce

the minimum-norm least-square solution to compute W as:

W =







||X − V 1||
...

||X − V i||







†

T

where T is the target output vector and V i are the

codebook vectors optimized using the LVQ1 rule.

Depending on the position where the minimum-norm

least-square solution is introduced into LVQ1 rule, we pro-

pose three possible implementations of LVQ-ELM. The

semi-code of one possible implementation is given as fol-

lows:

initialize V i, for each i, as the midpoints of the in-

put X, and W as binary values with percentage of 1s ac-

cording to the percentage of the training samples of each

class:

for each epoch do

randomly shuttle the order of the training patterns

for each pattern (X,T) do

∀i, hi = ||X − V i||
Y = winner − take − all(HT W)
c = argmin i(hi)
predicted class = argmax k(yk)
target class = argmax k(tk)
if predicted class = target class then

V c = V c + α(X − V c)
else

V c = V c − α(X − V c)
end if

end for

W = (||X − V i||)†T
check the stopping condition

end for

The above implementation updates W at each epoch. An-

other quite similar implementation of LVQ-ELM is to up-

date W after the LVQ1 completes its optimization on V i.

However, we suggest to update W at each epoch because

it is necessary to examine the stopping condition to know

where the algorithm stops at the end of each epoch. The

third possible implementation is to update W after the pre-

sentation of each pattern. We further refer to this imple-

mentation as LVQ-OSELM (for OSELM, refer to [7]). OS-

ELM itself is suited for online sequential learning situa-

tion, that means, at each time, one pattern is presented

and learned by algorithm, and will be discarded from the

computer memory. From this point of view, the advantage

of OSELM is useless for the practical implementation of

LVQ-OSELM, and therefore, we will not adopt it in our

simulation either.

3 Experimental Results

3.1 Wadsworth BCI dataset

The P300 speller data set from Wadsworth BCI [8] is used

here for the purpose of algorithm evaluation. The data set

contains two subjects, A and B. For each subject, there are

85 letters for training and 100 letters for testing. For each

letter, the recording consists of 15 epoches, and within each

epoch, there are 12 flashings. At each time, flashing is

randomly chosen to highlight one row/column. The vir-

tual keyboard contains six rows and six columns consisting

of a 6x6 grid representing 26 characters, 9 numbers and

one dash character. We are interested in measurements of

a one-second window starting from the onset of the flash-

ing, which consists of 240 samples at a sampling rate of

240Hz. In case the highlighted row/column contains the

target letter, we refer to it as the EP response; otherwise the

background EEG activities. We first use the raw EEG mea-

surements in time domain and normalize the amplitude into

range between 0 and 1 and focus on one channel Cz which

can observe P300 component well. The task of the algo-

rithms is to discriminate two EP responses from the other

background EEG activities for each epoch, and then to pre-

dict the spelled letter. We then repeat the experiment but

using all 64 channels in the dataset. Due to limited RAM

memory available, we need further preprocess the raw EEG

measurements by using a moving averaging filter (moving

window size equals to 13) followed by a subsampling op-

eration (subsampling factor equals to 13).

3.2 Model Selection

Before performance evaluation, one need to determinate

the model parameters, for example, the number of hidden

neurons in ELM, and for LVQ1 and LVQ-ELM, the number

of hidden neurons, the number of epoches and the learning

rate. The procedure for selecting these parameters is called

model selection and is implemented using the train and val-

idate method here. Hence, we need to further divide the

training data set of 85 letters into two subsets, the first 75

letters for training and the left 10 letters for validation. The

search procedure for ELM is in a one-dimension space and

a three-dimension space for LVQ1 and LVQ-ELM. In order

to facilitate the search procedure for LVQ1 and LVQ-ELM,

the number of epoches is decided inside the learning proce-

dure by examining the changes of validate accuracy to tell

at which point the training procedure should be stopped.

Further, we decompose the searching space into two one-

dimension spaces. First lets fix the learning rate at a reason-

able small value, and only optimize the number of hidden

neurons. After finding out the optimized number of hidden

neurons, we vary the values of learning rate in a predefined

possible range.

3.3 Performance Evaluation

Table 1 summarizes the results of model selection and the

correctly classified accuracy based on EEG measurements

from channel Cz. The values of model parameters are opti-

mize through the procedure as described in foregoing sub-

section. Here LVQ1 needs less hidden neurons than ELM.

Once the model parameters are optimized, the algorithms

are evaluated using the testing data set to estimate their gen-

eralization performance. The generalization performance

in our simulation is referred as the percentage of correctly

classified letters out of 100 testing letters and averaged over

30 trials of simulations. LVQ-ELM achieves the best per-

formance in both subjects but the improvement is not ob-

Method

Dataset ELM LVQ1 LVQ-ELM

Subject A 40.60% 40.43% 42.30%

240-80-2 240-20-2 240-80-2

lr=0.1 lr=0.005

Subject B 25.96% 25.86% 26.63%

240-40-2 240-12-2 240-12-2

lr=0.1 lr=0.1

Table 1. In the first row, the percentage of correctly classi-

fied letters for the test set are averaged over 30 trials and on

the base of EEG measurements from channel Cz and be-

low, the optimized model parameters are represented as the

architecture of the networks and the value of learning rate.

Method

Dataset ELM LVQ1 LVQ-ELM

Subject A 48.90% 32.10% 87.00%

1152-700-2 64X[18-8-2] 64X[18-8]-2

lr=0.1 lr=0.1

Subject B 50.80% 25.83% 96.00%

1152-700-2 64X[18-8-2] 64X[18-8]-2

lr=0.1 lr=0.1

Table 2. In the first row, the percentage of correctly clas-

sified letters for the test set are averaged over 30 trials and

on the base of EEG measurements from 64 channels and

below, the optimized model parameters are represented as

the architecture of the networks and the value of learning

rate.

vious for this simulation just based on EEG measurements

from one channel.

Therefore we repeat the above experiment but based

on the measurements from all channels. The simulation re-

sults are then summarized in Table 2. For this case, the

number of input features increases. Due to limited RAM

memory available, we have to filter the signal and then take

a subsample in order to keep as much information about the

EEG measurements as possible while reducing the number

of input features from 64*240 to 64*18. To extend to multi-

channel case, for ELM, the input vectors from 64 channels

are concatenated as one input, therefore its input dimension

is of 1152. For LVQ1, we let each LVQ model represent

one channel. LVQ-ELM is the combination of LVQ1 and

ELM: we let each independent competitive layer to learn

the morphology information from each channel measure-

ments same as LVQ1; while its assignment layer is simi-

lar with ELM to have each output neuron fully linked to

the competitive neurons of all independent layers. For this

case, it is clear to see LVQ-ELM obtains the best testing

accuracy using less hidden neurons than ELM.

4 Conclusion

The experimental results show that LVQ-ELM improves

the performance of LVQ by optimizing its layer weights

using minimum-norm least squares method using the same

scheme found in ELM. It is also found that LVQ-ELM may

reduce the number of neurons that ELM required to achieve

the same or better performance. Such advantage is even

more evident in large-scale application. The performances

obtain by our method are similar to the best algorithms used

on Wadsworth BCI dataset1. So, from a practical BCI view

of point, it will be interesting to investigate how this ap-

proach supports a reduction of the number of epochs in

order to increase the bit rate and make the patient more

comfortable with this equipment.

Moreover, cluster center-based methods are interest-

ing for knowledge extraction. So, the method of LVQ-ELM

will also be benefited for other problems such as, in the

medical domain, auditory evoked potential detection for

automated newborn hearing screening and k-complex de-

tection for automatic sleep scoring.

References

[1] L.A. Farwell and E. Donchin. Talking off the top of

your head: toward a mental prosthesis utilizing event-

related brain potentials. Electroencephalography and

Clinical Neurophysiology, 70(6):510–523, 1988.

[2] T. Kohonen. The self-organizing map. In Proceedings

of the IEEE, volume 78, pages 1464–1480, 1990.

[3] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew. Extreme

learning machine: A new learning scheme of feedfor-

ward neural networks. In Proceedings of International

Joint Conference on Neural Networks, volume 2, pages

985–990, Budapest, Hungary, 2004.

[4] G.-B. Huang, L. Chen, and C.-K. Siew. Universal

approximation using incremental constructive feedfor-

ward networks with random hidden neurons. IEEE

Transactions on Neural Networks, 17(4):879–892,

2006.

[5] P. L. Bartlett. The sample complexity of pattern clas-

sification with neural networks: the size of the weights

is more important than the size of the network. IEEE

Transactions on Information Theory, 44(2):525–536,

1998.

[6] V. Vapnik. The Nature of Statistical Learning Theory.

Springer-Verlag, 1995.

[7] N.-Y. Liang, G.-B. Huang, P. Saratchandran, and

N. Sundararajan. A fast and accurate on-line sequen-

tial learning algorithm for feedforward networks. IEEE

1http://ida.first.fraunhofer.de/projects/bci/

competition_iii/results/index.html

Transactions on Neural Networks, 17(6):1411–1423,

2006.

[8] D. J. Krusienski and G. Schalk. Wadsworth BCI

Dataset (P300 Evoked Potentials). BCI Competition

III Challenge, 2004.

