A fast multipole accelerated BEM for 3-D elastic wave computation - Archive ouverte HAL Access content directly
Journal Articles Revue Européenne de Mécanique Numérique/European Journal of Computational Mechanics Year : 2008

A fast multipole accelerated BEM for 3-D elastic wave computation

Abstract

The solution of the elastodynamic equations using boundary element methods (BEMs) gives rise to fully-populated matrix equations. Earlier investigations on the Helmholtz and Maxwell equations have established that the Fast Multipole (FM) method reduces the complexity of a BEM solution to $N \log_{2}N$ per GMRES iteration. The present article addresses the extension of the FM-BEM strategy to 3D elastodynamics in the frequency domain. Efficiency and accuracy are demonstrated on numerical examples involving up to $N=O(10^{6})$ boundary nodal unknowns.
Fichier principal
Vignette du fichier
chaillat.pdf (136.86 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-00329735 , version 1 (13-10-2008)

Identifiers

Cite

Stéphanie Chaillat, Marc Bonnet, Jean-François Semblat. A fast multipole accelerated BEM for 3-D elastic wave computation. Revue Européenne de Mécanique Numérique/European Journal of Computational Mechanics, 2008, 17, pp.701-712. ⟨10.3166/remn.17.701-712⟩. ⟨hal-00329735⟩
252 View
246 Download

Altmetric

Share

Gmail Facebook X LinkedIn More