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ABSTRACT.The solution of the elastodynamic equations using boundaryelement methods (BEMs)
gives rise to fully-populated matrix equations. Earlier investigations on the Helmholtz and
Maxwell equations have established that the Fast Multipole(FM) method reduces the complex-
ity of a BEM solution toN log

2
N per GMRES iteration. The present article addresses the

extension of the FM-BEM strategy to 3D elastodynamics in thefrequency domain. Efficiency
and accuracy are demonstrated on numerical examples involving up toN = O(106) boundary
nodal unknowns.

RÉSUMÉ. La résolution des équations de l’élastodynamique par la méthode des éléments de
frontière (BEM) conduit à un système linéaire plein. Faisant suite à des travaux sur les équa-
tions de Helmholtz et Maxwell ayant établi la capacité de la méthode multipôle rapide (FM)
à réduire la complexité de la BEM àN log

2
N par itération d’un solveur de type GMRES,

cet article présente la transposition de l’approche FM-BEMà l’élastodynamique 3D dans le
domaine fréquentiel. La précision et l’efficacité de la méthode sont illustrées sur des exemples
numériques mobilisant jusqu’àN = O(106) inconnues nodales de frontière.

KEYWORDS:boundary element method; fast multipole method; 3D elastodynamics.

MOTS-CLÉS :méthode des éléments de frontière ; méthode multipôle rapide ; élastodynamique
3D.
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1. Introduction

The boundary element method (BEM), pioneered in the sixties(Cruse, 1969;
Rizzo, 1967), is a mesh reduction method, subject to restrictive constitutive as-
sumptions but yielding highly accurate solutions. It is in particular well suited to
deal with unbounded-domain idealizations commonly used inseismology (Danglaet
al., 2005; Guzinaet al., 2001) for example. In contrast with domain discretization
methods, artificial boundary conditions (Givoli, 1992) arenot needed for dealing with
the radiation conditions, and grid dispersion cumulative effects are absent (Ihlenburg
et al., 1995; Semblatet al., 2000).

However, in traditional boundary element (BE) implementations, the dimen-
sional advantage with respect to domain discretization methods is offset by the fully-
populated nature of the BEM coefficient matrix, with set-up and solution times rapidly
increasing with the problem sizeN . It is thus essential to develop alternative, faster
strategies that allow to still exploit the known advantagesof BEMs when largeN
prohibit the use of traditional implementations.

In other areas such as computational electromagnetism or acoustics, considerable
improvements in the computing speed and memory efficiency ofBEM algorithms
have been achieved on the basis of the Fast Multipole Method (FMM) (see the review
article by Nishimura (2002)), with solution times typically of orderO(N log2 N) per
iteration for frequency-domain wave propagation problems(instead ofO(N2) per
iteration with traditional forms of the BEM).

This article is concerned with the formulation and implementation of a multi-
level FM-BEM for 3-D elastodynamics in the frequency domain. Only a few ref-
erences address this particular area of application. Two- and three-dimensional
FM-BEMs for frequency-domain elastodynamics are proposedin (Fujiwara, 1998)
and (Fujiwara, 2000; Yoshida, 2001), respectively, while time-domain problems are
addressed in (Takahashiet al., 2003). The present work improves on the methodol-
ogy of (Fujiwara, 2000) by incorporating recent advances ofFMM implementations
for Maxwell equations (Darve, 2000a) for achieving optimalcomputational efficiency.
Both the single-level and multi-level forms of the FM-BEM are considered, with em-
phasis on the latter.

2. Boundary integral method

2.1. Boundary integral representation

Let Ω ⊂ R
3 denote the region of space occupied by a three-dimensional elastic

solid with isotropic constitutive properties defined byµ (shear modulus),ν (Poisson’s
ratio) andρ (mass density). Time-harmonic motions, with circular frequencyω, in-
duced by a prescribed traction distributiontD on the boundary∂Ω and in the absence
of body forces, are considered for definiteness in this article. The accommodation of
other boundary conditions requires only straight forward modifications to the treat-
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ment proposed therein. The displacementu is given at an interior pointx ∈ Ω by the
following well-known representation formula (Bonnet, 1999):

uk(x) = −
∫

∂Ω

ui(y)T k
i (x, y; ω)dSy +

∫

∂Ω

tDi (y)Uk
i (x, y; ω)dSy (x ∈ Ω), [1]

whereUk
i (x, y; ω) andT k

i (x, y; ω) denote thei-th components of the elastodynamic
fundamental solution, i.e. of the displacement and traction, respectively, generated
at y ∈ R

3 by a unit point force applied atx ∈ R
3 along the directionk, given

by (Eringenet al., 1975):

Uk
i (x, y; ω) =

1

k2
Sµ

(

(δqsδik − δqkδis)
∂

∂xq

∂

∂ys
G(|y − x|; kS)

+
∂

∂xi

∂

∂yk
G(|y − x|; kP)

)

, [2a]

T k
i (x, y; ω) = Cijhℓ

∂

∂yℓ
Uk

h (x, y; ω)nj(y), [2b]

wherekS andkP are the respective wavenumbers of S and P elastic waves, so that

k2
S =

ρω2

µ
, kP = γkS, γ2 =

1 − 2ν

2(1 − ν)
, [3]

G(·; k) is the free-space Green’s function for the Helmholtz equation with wavenum-
berk, given by

G(r; k) =
exp(ikr)

4πr
, [4]

n(y) is the unit normal to∂Ω directed outwards ofΩ, andCijhℓ are the components
of the fourth-order elasticity tensor, i.e.:

Cijhℓ = µ
[ 2ν

1 − 2ν
δijδhℓ + δihδjℓ + δjhδiℓ

]

. [5]

2.2. Boundary integral equation

Whenx ∈ ∂Ω, a singularity occurs iny = x. With the help of a well-documented
limiting process (Brebbia, 1984), the integral representation [1] yields the integral
equation:

(Ku)(x) = f(x) (x ∈ ∂Ω), [6]

with the linear integral operatorK and the right-hand sidef defined by

(Ku)(x) = cik(x)ui(x) + (P.V.)
∫

∂Ω

ui(y)T k
i (x, y; ω)dSy [7]

f(x) =

∫

∂Ω

tDi (y)Uk
i (x, y; ω)dSy, [8]
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where (P.V.) indicates a Cauchy principal value (CPV) singular integral and thefree-
termcik(x) is equal to0.5δik in the usual case where∂Ω is smooth atx. The integral
operator [7] may be recast into alternative, equivalent regularized forms which are
free of CPV integrals (Bonnet, 1999). Equations [1] and [6] are applicable to either
interior or exterior elastodynamic problems.

3. Fast Multipole Method: principle

3.1. Multipole expansions of the elastodynamic fundamental solutions

The FMM is based on a reformulation of the fundamental solutions in terms of
products of functions ofx and ofy. This allows to re-use integrations with respect toy

when the collocation pointx is changed, thereby lowering theO(N2) complexity per
iteration entailed by standard BEMs. The elastodynamic fundamental solutions [2a,b]
are linear combinations of derivatives of the Green’s function [4] for the Helmholtz
equation. On recasting the position vectorr = y−x in the formr = r0 +(y−y0)−
(x − x0), wherex0 andy0 are two poles andr0 = y0 − x0, the Helmholtz Green’s
function is shown (Eptonet al., 1995; Darve, 2000b) to admit the decomposition

G(|r|; k) = lim
L→+∞

∫

ŝ∈S

e−ikŝ.(y−y
0
)GL(ŝ; r0; k)eikŝ.(x−x0) dŝ, [9]

whereS is the unit sphere ofR3 and thetransfer functionGL(ŝ; r0; k) is defined in
terms of the Legendre polynomialsPp and the spherical Hankel functions of the first

kind h
(1)
p by:

GL(ŝ; r0; k) =
ik

16π2

∑

0≤p≤L

(2p + 1)iph(1)
p (k|r0|)Pp

(

cos(ŝ, r0)
)

. [10]

The decomposition [9]–[10] is seen to achieve the desired separation of variablesx
andy. A similar multipole decomposition of the elastodynamic fundamental solutions
is easily obtained:

Uk
i (x, y; ω) = lim

L→+∞

∫

ŝ∈S

e−ikPŝ.(y−y
0
) Uk,P

i,L (ŝ; r0) eikPŝ.(x−x0) dŝ

+ lim
L→+∞

∫

ŝ∈S

e−ikSŝ.(y−y
0
) Uk,S

i,L (ŝ; r0) eikSŝ.(x−x0) dŝ, [11]

T k
i (x, y; ω) = lim

L→+∞

∫

ŝ∈S

e−ikPŝ.(y−y
0
) T k,P

i,L (ŝ; r0) eikPŝ.(x−x0) dŝ

+ lim
L→+∞

∫

ŝ∈S

e−ikSŝ.(y−y
0
) T k,S

i,L (ŝ; r0) eikSŝ.(x−x0) dŝ, [12]
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with the elastodynamic transfer functions given in terms ofthe acoustic transfer func-
tion GL by

Uk,P
i,L (ŝ; r0) =

γ2

µ
ŝiŝkGL(ŝ; r0; kP), [13a]

T k,P
i,L (ŝ; r0) =

−ikSγ
3

µ
CijhℓŝℓŝhŝkGL(ŝ; r0; kP)nj(y), [13b]

Uk,S
i,L (ŝ; r0) =

1

µ
(δik − ŝkŝi)GL(ŝ; r0; kS), [14a]

T k,S
i,L (ŝ; r0) =

−ikS

µ
(δhk − ŝkŝh)Cijhℓ ŝℓGL(ŝ; r0; kS)nj(y). [14b]

In practice, the limiting processL → +∞ in [9] or [11], [12] cannot be per-
formed exactly and is replaced with an evaluation for a suitably chosen finite value
of L. A key error analysis result (Darve, 2000b) states that there exist four constants
C1, C2, C3, C4 such that

L = C1 + C2k|r − r0| + C3 ln(k|r − r0|) + C4 ln ǫ−1

=⇒
∣

∣

∣

∣

exp(ik|r|)
4π|r| −

∫

ŝ∈S

e−ikŝ.(y−y
0
)GL(ŝ; r0; k)eikŝ.(x−x0) dŝ

∣

∣

∣

∣

< ǫ [15]

for any chosen error levelǫ < 1, whenever

|r − r0|/|r0| ≤ 2/
√

5. [16]

The result [15], [16] implies that expansions [11], [12] must be used for well-
separated sets of collocation and integration points clustered around polesx0 andy0.

3.2. Single-level fast multipole formulation

In the single-level FMM, a 3D cubic grid of linear spacingd embedding the bound-
ary ∂Ω is introduced. The centers of the cubic cells thus defined aretaken as poles
x0 or y0 in decompositions [11], [12]. Two cells are deemedadjacent(lettingA(C)
denote the set of cells which are adjacent to a given cubic cell C), if they have at least
one common point, e.g. a vertex. Wheneverx andy belong to cellsCx andCy that
are not adjacent, condition [16] is automatically fulfilledand expansions [11], [12]
can be safely used. Conversely, whenx andy lie in adjacent cells, condition [16]
is not assured and the classical expressions [2a,b] of the fundamental solutions are
used instead. These considerations lead to reformulate expressions [7] and [8], for
any collocation pointx lying in a given cellCx, as

(Ku)(x) = (Ku)near(x) + (Ku)FM(x),

f(x) = fnear(x) + fFM(x)
(x ∈ ∂Ω ∩ Cx), [17]
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where the “near” parts are defined for each collocation pointx as the net contributions
from the portion of boundary situated in cells adjacent to that containingx. The “FM”
parts then collect all contributions from cells that are notadjacent toCx.

The “near” contributions are evaluated by means of standardBE techniques. The
treatment of the “FM” contributions exploits expansions [11], [12] truncated at a finite
L and in a manner suggested by their multiplicative form, i.e.(i) evaluate integrals
over each cellCy and associate obtained values to the cell centery0, (ii) apply transfer
functions to obtain quantities associated to the centerx0 of cell Cx, and (iii) evalu-
ate contribution at each collocation pointx ∈ Cx. Accordingly,multipole moments,
defined by

RS,u
k (ŝ; Cy) = −ikS

[

δikŝj + δjk ŝi − 2ŝiŝj ŝk

]

×
∫

∂Ω∩Cy

ui(y)nj(y)e−ikSŝ.(y−y
0
)dSỹ [18a]

RP,u(ŝ; Cy) = −ikSγ
3
[ 2ν

1 − 2ν
δij + 2ŝiŝj

]

×
∫

∂Ω∩Cy

ui(y)nj(y)e−ikPŝ.(y−y
0
)dSỹ [18b]

RS,t
k (ŝ; Cy) =

1

µ

[

δka − ŝkŝa

]

∫

∂Ω∩Cy

ta(y)e−ikSŝ.(y−y
0
)dSỹ [19a]

RP,t(ŝ; Cy) =
γ2

µ

∫

∂Ω∩Cy

ŝata(y)e−ikPŝ.(y−y
0
)dSỹ [19b]

are computed for each cellCy (step (i)). Then,local expansionsfor the cellCx are
evaluated by applying the transfer functions to the multipole moments according to

LS,u
k (ŝ; Cx) =

∑

Cy 6∈A(Cx)

GL(ŝ; r0; kS)RS,u
k (ŝ; Cy), [20a]

LP,u(ŝ; Cx) =
∑

Cy 6∈A(Cx)

GL(ŝ; r0; kP)RP,u(ŝ; Cy) [20b]

LS,t
k (ŝ; Cx) =

∑

Cy 6∈A(Cx)

GL(ŝ; r0; kS)RS,t
k (ŝ; Cy), [21a]

LP,t(ŝ; Cx) =
∑

Cy 6∈A(Cx)

GL(ŝ; r0; kP)RP,t(ŝ; Cy), [21b]

wherer0 = y0 −x0 joins the centers of cellsCx andCy (step (ii)). Upon multiply-
ing [20a,b], [21a,b] by the local factorsexp

[

ikαŝ.(x − x0)
]

(step (iii)) and replacing
the integration over the unit sphere in [11], [12] by a numerical quadrature rule based
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on a set ofQ quadrature pointŝsq ∈ S and weightswq, the “FM” contributions finally
take the form

(Ku)FM
k (x) ≈

Q
∑

q=1

wq

[

eikSŝq.(x−x0)LS,u
k (ŝq; Cx)

+ eikPŝq.(x−x0)(ŝq)kLP,u(ŝq; Cx)
]

[22]

fFM
k (x) ≈

Q
∑

q=1

wq

[

eikSŝq.(x−x0)LS,t
k (ŝq; Cx)

+ eikPŝq.(x−x0)(ŝq)kLP,t(ŝq; Cx)
]

[23]

Expression [22] defines the “FM” contribution to the matrix-vector product[K]{u},
and hence is evaluated once per GMRES iteration, while [23] provides the “FM” con-
tribution to the right-hand side{f} and is computed once, prior to calling the GMRES
solver.

The single-level elastodynamic FMM is more efficient than the classical BEM,
with a complexity ofO(N3/2) per GMRES iteration. Further acceleration is achiev-
able by adopting a multi-level approach, as described next for the present context of
3-D elastodynamics.

3.3. Multi-level fast multipole formulation

To have maximal efficiency, FM-BEM algorithms must confine non-FM calcula-
tions to the smallest possible portion of the boundary whileclustering whenever pos-
sible the computation of influence terms into the largest possible non-adjacent groups.
This is achieved by the multi-level FMM (Darve, 2000a; Nishimura, 2002; Syl-
vand, 2002), which is based on using large cells and hierarchically subdividing each
cell into 2× 2× 2 = 8 children cubic cells. This cell-subdivision approach is sys-
tematized by means of an oct-tree structure of cells. The level ℓ = 0, composed of
only one cubic cell containing the whole surface∂Ω, is the tree root. The level-0 cell
is divided into2× 2× 2 = 8 children cubic cells, which constitute the levelℓ = 1.
All level-1 cells being adjacent, the FMM cannot be applied to them. The levelℓ = 2
is then defined by dividing each level-1 cell into 8 children cells, and so contains64
cells. The subdivision process is further repeated until the finest levelℓ = ℓ̄, implicitly
defined by a preset subdivision-stopping criterion, is reached. Level-̄ℓ cells are usually
termedleaf cells.

The multi-level approach basically consists in first applying the FMM to all in-
fluence computations between disjoint level-2 cells (so as to use the largest clusters
whenever possible), and then recursively tracing the tree downwards, applying the
FMM to all interaction between disjoint level-ℓ cells that are children of adjacent
level-(ℓ− 1) cells. Finally, interactions between adjacent leaf cells are treated using
traditional (i.e. non FM-based) BE techniques. This approach thus minimizes the
overall proportion of influence computations requiring thetraditional treatment.
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Previous studies for the Maxwell equations (Darve, 2000a) have established a cru-
cial practical consideration: for a given desired accuracy, both the truncation param-
eterL in the transfer function [10] and the number of quadrature points s̃q depend
on the subdivision level, and in fact increase withkαd (the cell-size-to-wavelength
ratio). The present implementation incorporates these findings, whereas that of Fuji-
wara (2000) does not. Accounting for these effects, the theoretical complexity of the
multi-level FMM is O(N log2 N) per iteration both for CPU time and memory (i.e.
somewhat higher than theO(N) complexity for static FM-BEM, where the truncation
parameter in the FMM expansion is not level-dependent).

4. Fast Multipole Method: accuracy and computational efficiency

Both the single-level and multi-level elastodynamic FMM have been implemented,
for three-noded triangular boundary elements. All examples have been run on the
same single-processor PC (RAM: 3Go, CPU frequency: 3.40 GHz). Except where
indicated otherwise, the multi-level FMM is used.

4.1. Spherical cavity under internal pressure

A spherical cavity of radiusR embedded in an elastic isotropic infinite medium
(with ν = 0.25) is subjected to an internal time-harmonic uniform pressure P . This
problem has a simple, spherically-symmetric, exact solution (Eringenet al., 1975)
against which numerically-computed solutions are compared using the root mean
square solution error. The results of such comparisons, performed for several nor-
malized frequenciesηP = kPR (i.e. ηP/π is the number of P wavelengths spanned by
the sphere diameter) and various distances from the cavity wall (R<r≤3R) are pre-
sented in Table 1. The present FM-BEM is seen to be very accurate, even in the nearly-
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Figure 1. Complexity of the standard BEM, single-level FMM and multi-level FMM
(left: CPU time, right: memory)
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ηP = kPR/π 0.01 0.50 1.00 2.00
# nodes/λS 800 16 8 4

RMS error,r = R (cavity wall) 0.018 0.006 0.006 0.021
RMS error,R<r≤3R (domain) 0.017 0.006 0.008 0.031

Table 1. Pressurized spherical cavity: RMS solution error on the cavity and in the
domain

static case (ηP = 0.01) for which the accuracy of FMM expansions of the form [9] is
known to deteriorate (Darve, 2000a), whereas the standard BEM does not (Danglaet
al., 2005). Moreover, the accuracy is seen to deteriorate, as expected, for mesh densi-
ties below about eight nodes per S wabelength. In all subsequent results, the meshes
are designed so as to feature at least10 nodes per S wavelength. Finally, the theoret-
ical complexities (i.e. the CPU time spent for each GMRES iteration as a function of
N ) are now compared against recorded CPU times, on the pressurized spherical cav-
ity problem. The numerical experiments corroborate previously mentioned theoretical
complexity estimates for standard BEM, single-level FMM and multi-level FMM, as
seen in Figure 1. This complexity study involves problem sizes of up toN ≈ 1.2 106,
while the examples of Fujiwara (2000) usedN ≤ 2.5 104.

4.2. Diffraction of an incident P plane wave by a semi-spherical canyon

This example is concerned with the diffraction by a semi-spherical canyon of a
plane P-wave of unit amplitude travelling vertically in an elastic homogeneous ir-
regular half-space (Figure 2), with againν = 0.25. The semi-spherical surface of the
canyon and the surrounding portion of free surface lying inside a disk of radiusD > R
are discretized using boundary elements. Such a configuration is representative of a

y

z
plane P wave

a

D = 3a

free surface

elastic half-spaceA

B C

Figure 2. Diffraction of an incident P plane wave by a semi-spherical canyon: nota-
tion
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Figure 3. Diffraction of an incident P plane wave by a semi-spherical canyon: hori-
zontal and vertical computed displacement on line ABC (withpoints A, B, C defined
on Fig. 2) plotted against arc-length abscissas along ABC (normalized frequency
ηP = 0.25)

"topographic site effect" in seismology, and has been the subject of numerous studies,
see (Danglaet al., 2005; Sánchez-Sesma, 1983) where diffraction of waves by surface
heterogeneities is considered.

Here, results obtained by the present FM-BEM for the (low) normalized frequency
ηP = 0.25, by means of a BE mesh featuringN = 23382 DOFs, are compared to cor-
responding results from Sánchez-Sesma (1983) (based on a semi-analytical approach)
and Reinosoet al. (1997) (obtained using a standard elastodynamic BEM). Figure 3
shows that the horizontal and vertical displacements on line ABC (with points A, B,
C defined on Fig. 2) produced by the three approaches are in good agreement. Note
that the corresponding results in Sánchez-Sesma (1983) andReinosoet al. (1997) are
plotted against the horizontal coordinatey, whereas the arc-length coordinates along
ABC is used in Fig. 3. The same valueD = 3R of the truncation radius has been used
for all three sets of results. The present computation required 7 GMRES iterations and
24s of CPU time per iteration.

Moreover, the FM-BEM allows to deal with non-dimensional frequencies signifi-
cantly higher than those considered in previous studies. Figure 4 shows the displace-
ments along line ABC computed for a nondimensional frequency ηP = 5 using the
present method. This time, the problem sizeN = 287 946 is well beyond the capa-
bilities of standard BEM. This computation required86 GMRES iterations (without
preconditioning) and5 mn CPU time per iteration.

The displacement near the canyon edge (i.e.y = R ands = πR/2, see Fig. 2) has
strong variations, as expected.
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Figure 4. Diffraction of an incident P plane wave by a semi-spherical canyon: hori-
zontal and vertical computed displacement on line ABC (withpoints A, B, C defined
on Fig. 2) plotted against arc-length abscissas along ABC (normalized frequency
ηP = 5)

The size of the problems that can be solved is now limited by the number of iter-
ations of the iterative solver. Reducing the iteration count requires a preconditioning
strategy. This critical component of the development of efficient FM-BEM algorithms
remains in the authors’ view a largely open issue and is not addressed here.

5. Conclusion

In this article, the Fast Multipole Method has been succesfully extended to3D
elastodynamics in the frequency domain. Combined with the BEM formulation, it
permits to reduce the computational burden, in both CPU timeand memory require-
ments, for the analysis of wave propagation (e. g. seismic),and allows to run BEM
models of sizeN = O(106) on an ordinary PC. Comparisons with analytical or previ-
ously published numerical results show the efficiency and accuracy of the present elas-
todynamic FM-BEM. Theoretical complexity estimates for both the single-level and
multi-level formulations were derived and corroborated bynumerical experiments.

Applications of the present FM-BEM to realistic cases in seismology are under
way. Moreover, a natural extension of this work consists in formulating multipole
expansions of other fundamental solutions, with the half-space elastodynamic funda-
mental solution being currently investigated.

Acknowledgements

This work is part of the project Quantitative Seismic HazardAssessment (QSHA)
funded by the French National Research Agency (ANR).



12 1re soumission àREMN

6. References

Bonnet M.,Boundary Integral Equation Method for Solids and Fluids, Wiley, 1999.

Brebbia C. A.and Telles J. C. F. W. L. C.,Boundary element techniques, Springer, 1984.

Cruse T., “ Numerical solutions in three-dimensional elastostatics”,Int. J. Solids Struct., vol. 5,
p. 1259-1274, 1969.

Dangla P., Semblat J. F., Xiao H., Delépine N., “ A simple and efficient regularization method
for 3D BEM: application to frequency-domain elastodynamics”, Bull. Seism. Soc. Am., vol.
95, p. 1916-1927, 2005.

Darve E., “ The Fast Multipole Method : Numerical Implementation”, J. Comp. Phys., vol. 160,
p. 195-240, 2000a.

Darve E., “ The fast multipole method: I. Error analysis and asymptotic complexity”,SIAM J.
Numer. Anal., vol. 38, p. 98-128, 2000b.

Epton M., Dembart B., “ Multipole translation theory for thethree-dimensional Laplace and
Helmholtz equations”,SIAM J. Sci. Comp., vol. 16, p. 865-897, 1995.

Eringen A., Suhubi E.,Elastodynamics, vol. II-linear theory, Academic Press, 1975.

Fujiwara H., “ The fast multipole method for the integral equations of seismic scattering prob-
lems”,Geophys. J. Int., vol. 133, p. 773-782, 1998.

Fujiwara H., “ The fast multipole method for solving integral equations of three-dimensional
topography and basin problems”,Geophys. J. Int., vol. 140, p. 198-210, 2000.

Givoli D., Numerical Methods for Problems in infinite domains, Elsevier, 1992.

Guzina B. B., Pak R. Y. S., “ On the Analysis of Wave Motions in aMulti-Layered Solid”,
Quart. J. Mech. Appl. Math., vol. 54, p. 13-37, 2001.

Ihlenburg F., Babuška I., “ Dispersion analysis and error estimation of Galerkin finite element
methods for the Helmholtz equation”,Int. J. Numer. Meth. Engng., vol. 38, p. 3745-3774,
1995.

Nishimura N., “ Fast multipole accelerated boundary integral equation methods”,Appl. Mech.
Rev., 2002.

Reinoso E., Wrobel L. C., Power H., “ Three-dimensional scattering of seismic waves from
topographical structures”,Soil. Dyn. Earthquake Engng., vol. 16, p. 41-61, 1997.

Rizzo F., “ An integral equation approach to boundary value problems of classical elastostatics”,
Quart. Appl. Math., vol. 25, p. 83-95, 1967.

Sánchez-Sesma F. J., “ Diffraction of elastic waves by 3D surface irregularities”,Bull. Seism.
Soc. Am., vol. 73, p. 1621-1636, 1983.

Semblat J. F., Brioist J., “ Efficiency of higher order finite elements for the analysis of seismic
wave propagation”,J. Sound Vib., vol. 231, p. 460-467, 2000.

Sylvand G., La méthode multipôle rapide en éléctromagnétisme : performances, parallélisation,
applications, PhD thesis, ENPC, 2002.

Takahashi T., Nishimura N., Kobayashi S., “ A fast BIEM for three-dimensional elastodynamics
in time domain”,Engng. Anal. Bound. Elem., vol. 27, p. 491-506, 2003.

Yoshida K., Applications of fast multipole method to boundary integral equation method, PhD
thesis, University of Kyoto, 2001.


