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ABSTRACTT he solution of the elastodynamic equations using bounelament methods (BEMs)
gives rise to fully-populated matrix equations. Earlievéstigations on the Helmholtz and
Maxwell equations have established that the Fast MultigieM) method reduces the complex-
ity of a BEM solution toN log, N per GMRES iteration. The present article addresses the
extension of the FM-BEM strategy to 3D elastodynamics infrdguency domain. Efficiency
and accuracy are demonstrated on numerical examples imgobp toN = O(10%) boundary
nodal unknowns.

RESUME. La résolution des équations de I'élastodynamique par lahod® des éléments de
frontiere (BEM) conduit a un systéme linéaire plein. Faisamite a des travaux sur les équa-
tions de Helmholtz et Maxwell ayant établi la capacité de Ethonde multipdle rapide (FM)
a réduire la complexité de la BEM & log, N par itération d'un solveur de type GMRES,
cet article présente la transposition de I'approche FM-BEMélastodynamique 3D dans le
domaine fréquentiel. La précision et I'efficacité de la noéléa sont illustrées sur des exemples
numeériques mobilisant jusqu® = O(10°) inconnues nodales de frontiére.

KEYWORDSboundary element method; fast multipole method; 3D elastaihics.

MoTs-CLES :méthode des éléments de frontiere ; méthode multipdle eapthstodynamique
3D.
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1. Introduction

The boundary element method (BEM), pioneered in the six&sise, 1969;
Rizzo, 1967), is a mesh reduction method, subject to réisgiconstitutive as-
sumptions but yielding highly accurate solutions. It is @rtrular well suited to
deal with unbounded-domain idealizations commonly useskismology (Danglat
al., 2005; Guzinaet al,, 2001) for example. In contrast with domain discretization
methods, artificial boundary conditions (Givoli, 1992) arg needed for dealing with
the radiation conditions, and grid dispersion cumulatifeats are absent (Ihlenburg
et al, 1995; Semblagt al,, 2000).

However, in traditional boundary element (BE) implemeiotad, the dimen-
sional advantage with respect to domain discretizatiorhouit is offset by the fully-
populated nature of the BEM coefficient matrix, with set-ug aolution times rapidly
increasing with the problem siz¥. It is thus essential to develop alternative, faster
strategies that allow to still exploit the known advantagéBEMs when largeN
prohibit the use of traditional implementations.

In other areas such as computational electromagnetisnoaisdcs, considerable
improvements in the computing speed and memory efficiendgEi¥l algorithms
have been achieved on the basis of the Fast Multipole MetRigld) (see the review
article by Nishimura (2002)), with solution times typigabif orderO(N log, N) per
iteration for frequency-domain wave propagation probldinstead ofO(N?) per
iteration with traditional forms of the BEM).

This article is concerned with the formulation and impletagion of a multi-
level FM-BEM for 3-D elastodynamics in the frequency domaidnly a few ref-
erences address this particular area of application. Twa tAree-dimensional
FM-BEMSs for frequency-domain elastodynamics are propasedrujiwara, 1998)
and (Fujiwara, 2000; Yoshida, 2001), respectively, whiteetdomain problems are
addressed in (Takahas#t al., 2003). The present work improves on the methodol-
ogy of (Fujiwara, 2000) by incorporating recent advanceBMM implementations
for Maxwell equations (Darve, 2000a) for achieving optimainputational efficiency.
Both the single-level and multi-level forms of the FM-BEMearonsidered, with em-
phasis on the latter.

2. Boundary integral method
2.1. Boundary integral representation

Let Q C R? denote the region of space occupied by a three-dimensitastice
solid with isotropic constitutive properties definedyshear modulus); (Poisson’s
ratio) andp (mass density). Time-harmonic motions, with circular freqcyw, in-
duced by a prescribed traction distributith on the boundary2 and in the absence
of body forces, are considered for definiteness in thislartithe accommodation of
other boundary conditions requires only straight forwambifications to the treat-
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ment proposed therein. The displacemeiig given at an interior point € ) by the
following well-known representation formula (Bonnet, 239

ug(x) = —/ ui(y)Tik(:v,y;w)dSy+/ tP (y)Uf (z, y;w)dS, (z € Q), [1]
a0 2Q
whereUF (z, y; w) andT} (x, y; w) denote the-th components of the elastodynamic
fundamental solution, i.e. of the displacement and tragtiespectively, generated
aty € R3 by a unit point force applied at € R3 along the directiork, given
by (Eringenet al, 1975):

1 o 0
. s sy 9 ol
U, 950) = - (Basdin = bdis) 5=y = als o)
g 0
+ oz, a—ykGﬂy —xl; kP)), [2a]
k 8 k
T (x,y;w) = Cijhéa_yeUh (z,y;w)n;(y), [2D]

whereks andkp are the respective wavenumbers of S and P elastic wavesatso th

2
pw 9 1-2v
K=" kp=nk = 3
S [ 3 P YRS, Y 2(171/)7 [ ]

G(-; k) is the free-space Green’s function for the Helmholtz equatvith wavenum-

berk, given by

Grik) = exp(ikr)

drr [41

n(y) is the unit normal t&2 directed outwards of?, andC;;, are the components
of the fourth-order elasticity tensor, i.e.:
2v

Cijne = pb Eéijéhé + dindje + 5jh5i4 . [5]

2.2. Boundary integral equation

Whenzx € 012, a singularity occurs iy = x. With the help of a well-documented
limiting process (Brebbia, 1984), the integral represémta[1] yields the integral
equation:

(Ku)(®) = f(z) (@€ ), (6]

with the linear integral operatd€ and the right-hand sidg defined by

(Ku)(x) = cir(x)u;(x) + (P.V.) o uz(y)TZk (z,y; w)dS, [7]

f(z) = /6 P @)U @y, [8]
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where (P.V.) indicates a Cauchy principal value (CPV) siagintegral and théree-
terme;, () is equal t00.54;;, in the usual case wheti? is smooth ate. The integral
operator [7] may be recast into alternative, equivalentilaized forms which are
free of CPV integrals (Bonnet, 1999). Equations [1] and @] applicable to either
interior or exterior elastodynamic problems.

3. Fast Multipole Method: principle
3.1. Multipole expansions of the elastodynamic fundamental solutions

The FMM is based on a reformulation of the fundamental sohgiin terms of
products of functions of and ofy. This allows to re-use integrations with respecgto
when the collocation point is changed, thereby lowering tiig N?) complexity per
iteration entailed by standard BEMs. The elastodynamidémmental solutions [2a,b]
are linear combinations of derivatives of the Green’s fiorc{4] for the Helmholtz
equation. On recasting the position veator y —x in the formr = ro+ (y —y,) —
(x — zo), wherex, andy, are two poles and, = y, — ¢, the Helmholtz Green’s
function is shown (Eptoet al, 1995; Darve, 2000b) to admit the decomposition

G(|r|;k) = lim ek (U=Y0) G, (8;7¢; k)eE (@0 g3, [9]

L—+oo Jses

whereS is the unit sphere dk? and thetransfer functionGy (3; ro; k) is defined in
terms of the Legendre polynomiat} and the spherical Hankel functions of the first

kind bV by:

ik

Gr(8;r03 k) = 6.2

> (@p+ DiPAY (klro|) Py (cos(8,m0)).  [10]
0<p<L

The decomposition [9]-[10] is seen to achieve the desiredrsgion of variables:
andy. A similar multipole decomposition of the elastodynamicdamental solutions
is easily obtained:

. —ikps. (y— P/ ikps. (z— .
UF(z,y;w) = lim e~ 1kes.(y yO)Uf’L(s;ro)e‘kps'(w z0) dg
L—+c0 Jses '

+ LhToo . efiks§.(y*yo)uff(§;ro> eikss-(@=z0) g3 [11]

TF(z,y;w) = lim e~ kp3-(¥=yo) ’Z;kip(é; r0) elkrs-(@=20) 3
L—+4o00 3€8 ’

o m [ TR TR (g g et () ds, - [12]
e
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with the elastodynamic transfer functions given in termthefacoustic transfer func-
tion Gy, by

2

Uy (8;m0) = %ﬁﬁkgL(é;?’o; kp), [13a]
kP .\ —iksy? IP L
7.7 (8r0) = Cijne8e5n5:G1(8;r0; kp)nj(y), [13b]
US(5: 1) = 1 §,.4 S
i (8m0) = ;(@k — 8181)GL(8;70; ks), [14a]
o —ik L . ~
TfL’S(S; o) = S(5hk — 5651)Cijne$eGr(8;ro; ks)nj (y). [14b]

In practice, the limiting procesé — +oo in [9] or [11], [12] cannot be per-
formed exactly and is replaced with an evaluation for a blitahosen finite value
of L. A key error analysis result (Darve, 2000b) states thattle&ist four constants
C1,C5,C3, C4 such that

L = Cy + Cok|r —ro| + C3In(k|r — ro|) + Cylne?
exp(ik|r|)

—/ e_ikg'(y_yO)gL(é;ro;k)eikg'(w_w") di| <e [15]
dm|r| ses

for any chosen error level< 1, whenever

|7 — ol /Iro| < 2/V/5. (16]

The result [15], [16] implies that expansions [11], [12] mbge used for well-
separated sets of collocation and integration points@fadtaround poles, andy,.

3.2. Single-level fast multipole formulation

In the single-level FMM, a 3D cubic grid of linear spacistigmbedding the bound-
ary 082 is introduced. The centers of the cubic cells thus definedaken as poles
xo or y, in decompositions [11], [12]. Two cells are deenstjacent(letting A(C)
denote the set of cells which are adjacent to a given cubicygf they have at least
one common point, e.g. a vertex. Whenexeandy belong to cell<, andC, that
are not adjacent, condition [16] is automatically fulfilladd expansions [11], [12]
can be safely used. Conversely, wherandy lie in adjacent cells, condition [16]
is not assured and the classical expressions [2a,b] of tdafuental solutions are
used instead. These considerations lead to reformulatessipns [7] and [8], for
any collocation poiniz lying in a given cellC,, as

(Ku)(@) = (Ku)" () + (Ku)™ (z),

(x€dQNC,), [17]
flx) = ") + M (x)



6 1 soumission REMN

where the “near” parts are defined for each collocation poid the net contributions
from the portion of boundary situated in cells adjacent & ttontaininge. The “FM”
parts then collect all contributions from cells that are adjacent tc,,..

The “near” contributions are evaluated by means of stanB&rtechniques. The
treatment of the “FM” contributions exploits expansion$][12] truncated at a finite
L and in a manner suggested by their multiplicative form, {ieevaluate integrals
over each cell, and associate obtained values to the cell cepe(ii) apply transfer
functions to obtain quantities associated to the centeof cell C., and (iii) evalu-
ate contribution at each collocation pointe C,.. Accordingly,multipole moments
defined by

RY“(8;Cy) = —iks[0ind; + Gjndi — 285151

<[ty o was, [182]
a0nc,
2v
P, .3 L 5.5,
R™(8;Cy) = —iksy [1 — 2y5w + 2515]}
<[ (e s, [18b]
a0nc,
. -
Ry (8:Cy) = — [0ka — k50 / ta(y)e o 07w0)as; — [19a]
I a0NC,
2 n
RP4(5:¢,) = L / Sata(y)e oSS, [19b]
B Joonc,

are computed for each cell, (step (i)). ThenJocal expansiongor the cellC, are
evaluated by applying the transfer functions to the mulépooments according to

LPM(8:C) = Y. Gu(8moks)RY"(8:C,), [20a]
CygA(Cz)

L&) = Y Gu(8ro ke RVU(5:C,) [20b]
CygA(Cz)

LPN8:C) = Y Gu(3roks)RY(3:C,), [214]
Cy g A(Cz)

LPN(3C) = > Gr(direke)RP(3;C,), [21b]
CygA(Cz)

wherery = y, — xo joins the centers of cells, andC, (step (ii)). Upon multiply-
ing [20a,b], [21a,b] by the local factoesp ik, 3.(x — x0)] (step (iii)) and replacing
the integration over the unit sphere in [11], [12] by a nurv&rquadrature rule based
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on a set ofy quadrature points, € .S and weightsu,, the “FM” contributions finally
take the form

Q
/Cu FM Z [ iksdq.(z— wo)KSu(Sq,C )

et (om0 (5,), P (3,C,)| [22]

Z |:1kssq x—xo ESt(Sq,C)
I CHIVesl ERTES] [23]

Expression [22] defines the “FM” contribution to the matvieetor produc{K{u},
and hence is evaluated once per GMRES iteration, while [&8]iges the “FM” con-
tribution to the right-hand sidgf } and is computed once, prior to calling the GMRES
solver.

The single-level elastodynamic FMM is more efficient thaa ttassical BEM,
with a complexity ofO(N3/2) per GMRES iteration. Further acceleration is achiev-
able by adopting a multi-level approach, as described raxthe present context of
3-D elastodynamics.

3.3. Multi-level fast multipole formulation

To have maximal efficiency, FM-BEM algorithms must confinen+teM calcula-
tions to the smallest possible portion of the boundary wtlilstering whenever pos-
sible the computation of influence terms into the largessis non-adjacent groups.
This is achieved by the multi-level FMM (Darve, 2000a; Nisbira, 2002; Syl-
vand, 2002), which is based on using large cells and hieicalty subdividing each
cell into 2 x 2 x 2 = 8 children cubic cells. This cell-subdivision approach is-sy
tematized by means of an oct-tree structure of cells. Thel lew- 0, composed of
only one cubic cell containing the whole surfa2®@, is the tree root. The levél-cell
is divided into2 x 2 x 2 = 8 children cubic cells, which constitute the levek 1.
All level-1 cells being adjacent, the FMM cannot be applied to them. &hell = 2
is then defined by dividing each leveleell into 8 children cells, and so contai6$
cells. The subdivision process is further repeated urdifithest level = ¢, implicitly
defined by a preset subdivision-stopping criterion, ishedc Levelé cells are usually
termedleaf cells

The multi-level approach basically consists in first appdythe FMM to all in-
fluence computations between disjoint leRetells (so as to use the largest clusters
whenever possible), and then recursively tracing the taendvards, applying the
FMM to all interaction between disjoint levélcells that are children of adjacent
level-(¢ — 1) cells. Finally, interactions between adjacent leaf calisteeated using
traditional (i.e. non FM-based) BE techniques. This apghoidius minimizes the
overall proportion of influence computations requiring trelitional treatment.
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Previous studies for the Maxwell equations (Darve, 200@aglestablished a cru-
cial practical consideration: for a given desired accurbogh the truncation param-
eter L in the transfer function [10] and the number of quadratureisa, depend
on the subdivision level, and in fact increase wit{d (the cell-size-to-wavelength
ratio). The present implementation incorporates thesénfiysd whereas that of Fuji-
wara (2000) does not. Accounting for these effects, thertimal complexity of the
multi-level FMM is O(N log, N) per iteration both for CPU time and memory (i.e.
somewhat higher than th@(/V') complexity for static FM-BEM, where the truncation
parameter in the FMM expansion is not level-dependent).

4. Fast Multipole Method: accuracy and computational efficency

Both the single-level and multi-level elastodynamic FMMéaaeen implemented,
for three-noded triangular boundary elements. All examplave been run on the
same single-processor PC (RAM: 3Go, CPU frequency: 3.40)GHzxcept where
indicated otherwise, the multi-level FMM is used.

4.1. Spherical cavity under internal pressure

A spherical cavity of radiugz embedded in an elastic isotropic infinite medium
(with v = 0.25) is subjected to an internal time-harmonic uniform presdeir This
problem has a simple, spherically-symmetric, exact smufEringenet al,, 1975)
against which numerically-computed solutions are compargng the root mean
square solution error. The results of such comparison$oimeed for several nor-
malized frequenciege = kpR (i.€. np/7 is the number of P wavelengths spanned by
the sphere diameter) and various distances from the cauaity(\® < <3 R) are pre-
sented in Table 1. The present FM-BEM is seen to be very agxneen in the nearly-

1le+0

1e+02 1le+04

leso 1e+07-

CPU Jiter (s)

Size of BEM matrix (Mo)

i
)
2
Q
R
\

le0z - o multi-level FMM [ R o multi-level FMM ||
. —— O(N log,N) RRd —— O(Nlog,N)

| | Ll Ll Ll | Ll Ll
1le+02 1e+03 1e’:‘04 1e+05 1le+06 1e+02 1e+03 le+04 1e+05 1e+06
N

Figure 1. Complexity of the standard BEM, single-level FMM and miaitiel FMM
(left: CPU time, right: memory)
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np = kpR/m 0.01 | 0.50 | 1.00 | 2.00

# nodes/ s 800 16 8 4
RMS error,r = R (cavity wall) | 0.018 | 0.006| 0.006| 0.021
RMS error,R<r<3R (domain)| 0.017 | 0.006| 0.008| 0.031

Table 1. Pressurized spherical cavity: RMS solution error on theigaand in the
domain

static caserfp = 0.01) for which the accuracy of FMM expansions of the form [9] is
known to deteriorate (Darve, 2000a), whereas the standahd @oes not (Danglat
al., 2005). Moreover, the accuracy is seen to deteriorate,@scéad, for mesh densi-
ties below about eight nodes per S wabelength. In all sulesgqgasults, the meshes
are designed so as to feature at lddshodes per S wavelength. Finally, the theoret-
ical complexities (i.e. the CPU time spent for each GMRE#&iten as a function of
N) are now compared against recorded CPU times, on the piasdspherical cav-
ity problem. The numerical experiments corroborate preslipmentioned theoretical
complexity estimates for standard BEM, single-level FMMi anulti-level FMM, as
seen in Figure 1. This complexity study involves problenesiaf up tolV ~ 1.2 105,
while the examples of Fujiwara (2000) usad< 2.5 10%.

4.2. Diffraction of an incident P plane wave by a semi-spherical canyon

This example is concerned with the diffraction by a semiesfal canyon of a
plane P-wave of unit amplitude travelling vertically in alastic homogeneous ir-
regular half-space (Figure 2), with again= 0.25. The semi-spherical surface of the
canyon and the surrounding portion of free surface lyinglma disk of radiu® > R
are discretized using boundary elements. Such a configaratirepresentative of a

free surface a

- — >

A elastic half-space

Y
plane P wavi

z

Figure 2. Diffraction of an incident P plane wave by a semi-spheriaiyon: nota-
tion
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| (preser’lt FMM)

Floo |ul (Sanchez-Sesma)
° |uy| (Reinoso et al.)
M— v (present FMM) 3
o |u,| (Sanchez-Sesmg)
r| = |u(Reinoso etal)

w

displacement modulus
N
T
L

=
T
|

. »»»__,—"’007’?’f"ﬂ"a‘v—»ﬂ»—;e,
c-e--ar ® & . | . |

1 2 3
s/R

R

Figure 3. Diffraction of an incident P plane wave by a semi-sphericatyon: hori-
zontal and vertical computed displacement on line ABC (piimts A, B, C defined
on Fig. 2) plotted against arc-length abscissaalong ABC (normalized frequency
npe = 025)

"topographic site effect" in seismology, and has been thgstiof numerous studies,
see (Dangla&t al., 2005; Sanchez-Sesma, 1983) where diffraction of wavestigce
heterogeneities is considered.

Here, results obtained by the present FM-BEM for the (lowymalized frequency
np = 0.25, by means of a BE mesh featuring = 23382 DOFs, are compared to cor-
responding results from Sanchez-Sesma (1983) (based om-@salytical approach)
and Reinoset al. (1997) (obtained using a standard elastodynamic BEM).rEi§u
shows that the horizontal and vertical displacements anABC (with points A, B,
C defined on Fig. 2) produced by the three approaches are ohagreement. Note
that the corresponding results in Sdnchez-Sesma (198R@indscet al. (1997) are
plotted against the horizontal coordingtevhereas the arc-length coordinatalong
ABC is used in Fig. 3. The same valilie= 3R of the truncation radius has been used
for all three sets of results. The present computation requi GMRES iterations and
24s of CPU time per iteration.

Moreover, the FM-BEM allows to deal with non-dimension@duencies signifi-
cantly higher than those considered in previous studiggiri4 shows the displace-
ments along line ABC computed for a nondimensional freqyempc= 5 using the
present method. This time, the problem si¥e= 287 946 is well beyond the capa-
bilities of standard BEM. This computation require® GMRES iterations (without
preconditioning) and mn CPU time per iteration.

The displacement near the canyon edge fj-.R ands = 7R/2, see Fig. 2) has
strong variations, as expected.



FMM in 3-D elastodynamics 11

- | -
| (present FMM
— 4 (present FMM

displacement modulus

|
2
s/R

Figure 4. Diffraction of an incident P plane wave by a semi-sphericatyon: hori-
zontal and vertical computed displacement on line ABC (piimts A, B, C defined
on Fig. 2) plotted against arc-length abscissaalong ABC (normalized frequency

np = 5)

The size of the problems that can be solved is now limited byntlmber of iter-
ations of the iterative solver. Reducing the iteration ¢aequires a preconditioning
strategy. This critical component of the development otidfit FM-BEM algorithms
remains in the authors’ view a largely open issue and is nitess$ed here.

5. Conclusion

In this article, the Fast Multipole Method has been sucdlyséxtended to3D
elastodynamics in the frequency domain. Combined with tB&Bormulation, it
permits to reduce the computational burden, in both CPU &ineememory require-
ments, for the analysis of wave propagation (e. g. seismai),allows to run BEM
models of sizeV = 0(10°) on an ordinary PC. Comparisons with analytical or previ-
ously published numerical results show the efficiency ardi@cy of the present elas-
todynamic FM-BEM. Theoretical complexity estimates fottbthe single-level and
multi-level formulations were derived and corroboratedhiynerical experiments.

Applications of the present FM-BEM to realistic cases irss®logy are under
way. Moreover, a natural extension of this work consistsonmiulating multipole
expansions of other fundamental solutions, with the haédfeg elastodynamic funda-
mental solution being currently investigated.
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