A comprehensive modelling way for assessing real-time mixings of mineral and anthropogenic pollutants in East Asia
Résumé
In order to assess the complex mixing of atmospheric anthropogenic and natural pollutants over the East Asian region, we propose to take into account the main aerosols simultaneously present over China, Korea and Japan during the spring season. With the mesoscale RAMS (Regional Atmospheric Modeling System) tool, we present a simulation of natural (desert) dust events along with some of the most critical anthropogenic pollutants over East Asia: sulphur elements (SO2 and SO42-) and Black Carbon (BC).
During a 2-week case study of dust events which occurred in April 2005 over an area extending from the Gobi deserts to the Japan surroundings, we retrieve the behaviours of the different aerosols plumes. We focus on possible dust mixing with the anthropogenic pollutants from megalopolis. For both natural and anthropogenic pollution, the model results are in general agreement with the horizontal and vertical distributions of concentrations as measured by remote data, in situ LIDAR, PM10 data and literature. In particular, we show that a simplified chemistry approach of this complex issue can be efficient enough to model this event, with a real-time step of 3 h. The model provides the good shapes and orders of magnitude for the Aerosol Optical Thickness (AOT) and species contributions (via the Angström Exponent) when compared with the AERONET data.
During a 2-week case study of dust events which occurred in April 2005 over an area extending from the Gobi deserts to the Japan surroundings, we retrieve the behaviours of the different aerosols plumes. We focus on possible dust mixing with the anthropogenic pollutants from megalopolis. For both natural and anthropogenic pollution, the model results are in general agreement with the horizontal and vertical distributions of concentrations as measured by remote data, in situ LIDAR, PM10 data and literature. In particular, we show that a simplified chemistry approach of this complex issue can be efficient enough to model this event, with a real-time step of 3 h. The model provides the good shapes and orders of magnitude for the Aerosol Optical Thickness (AOT) and species contributions (via the Angström Exponent) when compared with the AERONET data.
Domaines
Océan, AtmosphèreOrigine | Accord explicite pour ce dépôt |
---|
Loading...