Extension of Higher-Order HMC Modeling with Application to Image Segmentation - Archive ouverte HAL
Article Dans Une Revue Digital Signal Processing Année : 2008

Extension of Higher-Order HMC Modeling with Application to Image Segmentation

Cyril Carincotte
  • Fonction : Auteur
Stéphane Derrode

Résumé

extending the memory lengthes of both the Markov chain process and the data-driven densities arising in the model. The new model is able to learn more complex noise structures, with respect to the configuration of several previous states and observations. Model parameters estimation is performed from an extension of the general Iterative Conditional Estimation (ICE) method to take into account memories, which makes the classification algorithm unsupervised. The higher-order HMC model is then evaluated in the image segmentation context. A comparative study conducted on a simulated image is carried out according to the order of the chain. Experimental results on a Synthetic Aperture Radar (SAR) image show that higher-order model can provide more homogeneous segmentations than the classical model, but to the cost of higher memory and computing time requirements.
Fichier principal
Vignette du fichier
CMC-R_S.pdf (465.84 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00325103 , version 1 (26-09-2008)

Identifiants

Citer

Lamia Benyoussef, Cyril Carincotte, Stéphane Derrode. Extension of Higher-Order HMC Modeling with Application to Image Segmentation. Digital Signal Processing, 2008, 18 (5), pp.849-860. ⟨10.1016/J.dsp.2007.10.010⟩. ⟨hal-00325103⟩
76 Consultations
176 Téléchargements

Altmetric

Partager

More