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Extension of Higher-Order HMC Modeling

with Application to Image Segmentation
Lamia Benyoussef, Cyril Carincotte and Stéphane Derrode

Abstract

In this work, we propose to improve the neighboring relationship ability of the Hidden Markov Chain (HMC) model, by
extending the memory lengthes of both the Markov chain process and the data-driven densities arising in the model. The new
model is able to learn more complex noise structures, with respect to the configuration of several previous states and observations.
Model parameters estimation is performed from an extension of the general Iterative Conditional Estimation (ICE) method to take
into account memories, which makes the classification algorithm unsupervised. The higher-order HMC model is then evaluated
in the image segmentation context. A comparative study conducted on a simulated image is carried out according to the order
of the chain. Experimental results on a Synthetic Aperture Radar (SAR) image show that higher-order model can provide more
homogeneous segmentations than the classical model, but to the cost of higher memory and computing time requirements.

Index Terms

Unsupervised Image segmentation, Higher-order Hidden Markov Chain, Iterative Conditional Estimation, Maximal Posterior
Mode.

I. INTRODUCTION

Since more than twenty years and the pioneering works by Geman, Besag, Marroquin and co-authors [1], [2], [3], Hidden

Markov Random Fields (HMRF) have now a wide range of applications in the field of image analysis [4], [5], [6]. For example,

in remote sensing applications, HMRF have been used to segment agricultural region, to detect linear structures such as road

or coastline, or to map changes between images taken at two dates [7], [8], [9].

The interest in Markovian models is mainly due to the fact that when the unobservable process X can be modeled by

a finite Markov model and when the noise is not too complex, then X can be recovered from the observed process Y by

using Bayesian classification techniques such as Maximum A Posteriori (MAP) or Marginal Posterior Mode (MPM). In case

of unsupervised classification, Markovian parameters have to be estimated from the observed data only. Well-known iterative

methods like Estimation-Maximization (EM), stochastic EM (SEM) or Iterative Conditional Estimation (ICE) [10] can be used.

In case of HMRF, all estimation methods require time-expensive “trial-and-error” procedures using Monte Carlo simulations [6],

[11] (Metropolis algorithm or Gibbs sampler), resulting in a considerable computational burden, although methods, such as

the mean-field like approximation, try to make EM-based estimation more tractable [12].

Recently, it has been shown that the Hidden Markov Chain (MHC) model [13], applied to image segmentation through a

HilbertPeano scan [14] of the image (see Fig. 1), can often compete with HMRF based methods in terms of classification

accuracy [15]. The HMC estimation stage is much faster than the HMRF one since update equations of internal parameters,

i.e. regularity parameters made of the transition matrix and the data-driven parameters assumed Gaussian here, are analytic in

case of EM [16] or require simulation without iterative procedures in case of SEM and ICE. However, HMRF provide a finer

and more intuitive modeling of spatial relationships between neighboring pixels, through the system of cliques representing

different topologies of contextual interaction.

To improve the spatial relationship capacity of HMC models, several works try to compensate for the model limitations due

to the set of simplifying assumptions. We can cite semi-Markov models, experienced with success in speech processing [17],

for which the probability of there being a change in the hidden state depends on the amount of time that has elapsed since

entry into the current state. Other works try to relax the conditional independence assumption, such as the factorial HMM [18],

the HMM2 [19] and the double Markov chain [20] models which used several Markov chains at different levels. We must also

cite the pairwise Markov chain [21] and triplet Markov chain [22] models, for which the hidden process is not necessarily

Markovian. But conditionally to the observed process it remains Markovian, still allowing Bayesian classification. Another
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Fig. 1. Hilbert-Peano scan construction for an 8 × 8 image. This scan is used to transform a 2D image into a 1D signal, and conversely.

solution consists in increasing the memory length R of the Markov chain process, i.e. each hidden state depends on the R

previous states. HMCR now denotes a hidden Markov process with a memory length of R, HMC1 being the classical model.

By the past, only HMC2 model has been evaluated for speech and handwritten recognition [23], [24], genomic [25] and

robotic [26], with very limited improvements compared to HMC1. This can be explained by the fact that any R-order hidden

Markov chain can be transformed into an equivalent first order HMC, see for example [27].

The main novelty of this work is to increase the memory of the data-driven densities (noted S) accordingly to the Markov

chain memory length (S ≤ R). Hence, specific densities model the noise with respect to the R previous states configurations,

allowing to model more complex noise structures. While the model is presented to deal with images, it is very general and of

interest for all classical fields of application of HMC in including speech processing, genomic, economy, pattern recognition. . . .

All algorithms are described in sufficient details to be implemented by readers that are familiar with statistical data restoration

processing.

The remaining of the paper is organized as follows. Higher-order Markov chains and higher-order hidden Markov chains

are briefly presented in Section II, together with the integration of an extended memory length for data-driven densities. Then,

in order to achieve unsupervised MPM classification, an extension of the ICE procedure to those higher-order HMC models

is described in Section III. Experimental results with a simulated image and a Synthetic Aperture Radar (SAR) image are

presented in Section IV. Conclusion and perspectives are drawn in Section V.

II. HIGH-ORDER HIDDEN MARKOV CHAINS

We start by recalling basic facts about higher-order Markov chains and by introducing notations. We next present higher-

order hidden Markov chains and show how it is possible to relax the classical assumption on HMC to introduce a memory

greater than one in the data-driven densities arising in the model.

A. High-Order Markov Chains

To simplify notations, Xn:m, with n ≤ m, will denote the sequence of random variables {Xn, . . . , Xm}, and p (X = x)
will be written p (x). The process X = X1:N , with Xn ∈ Ω = {1, . . . , K} is a discrete and finite R-order Markov chain if

and only if

p (xn+1 | x1:n) = p (xn+1 | xn−R+1:n) . (1)

Assuming further that the Markov chain is homogeneous, Eq. (1) does not depend on the index n and the distribution of

X is determined by

• the R-order transition matrix AR, valid for pixels n ≥ R, whose elements are given by

aR
j|i1,··· ,iR

= p (XR+1 = j | X1 = i1, . . . , XR = iR) ,

where i1, . . . , iR and j belong to Ω.

• the intermediate transitions matrices An, for pixels 1 ≤ n < R, obtained by marginalizing AR. For n = R − 1, the

intermediate transition matrix is defined by

aR−1
j|i1,··· ,iR−1

= p (XR = j | X1 = i1, . . . , XR−1 = iR−1) =

K∑

iR=1

aR
j|i1,··· ,iR

.
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Fig. 2. Independence assumptions assumed in a HMC2 model. The dotted lines represent the new connection made by relaxing assumption H 2 (here
S = 2), illustrating model HMC2−2.

• the distribution π of X1, denoted by πj = p (X1 = j).

The distribution of X can then be written as

p (x) = πx1

R−1∏

n=1

an
xn+1|x1:n

N−1∏

n=R

aR
xn+1|xn−R+1:n

.

B. High-Order Hidden Markov Chains (HMCR)

Using the Hilbert-Peano scan illustrated in Fig. 1, an image y = y1:N , N being the total number of pixels, is considered

as a realization of the 1D observed process Y = Y 1:N , each Yn ∈ R. The segmented image x = x1:N is considered as a

realization of the R-order Markov chain X .

With the following additional properties

• H 1 - Random variables Yn are independent conditionally to X : p (y | x) =

N∏

n=1

p (yn | x),

• H 2 - The distribution of each Yn conditionally on X is equal to its distribution conditionally on Xn : p (yn | x) =
p (yn | xn),

the distribution of the joint process (X,Y ) can be written as

p (x, y) = πx1
fx1

(y1)

R−1∏

n=1

an
xn+1|x1:n

fxn+1
(yn+1)

N−1∏

n=R

aR
xn+1|xn−R+1:n

fxn+1
(yn+1), (2)

with fk(yn) = p (yn | xn = k) the data-driven densities, which are assumed Gaussian in this work (see [13] for generalized

mixtures in HMC1).

Fig. 2 illustrates independence assumptions for a HMC2 model. The continuous lines connecting variables Xn represent the

order of the Markov chain, while the continuous lines connecting Yn with Xn symbolize assumption H 2. This assumption is

not strictly necessary and can be relaxed by considering additional connections of Yn with Xn−1, Xn−2, . . .

• H bis - The distribution of each Yn conditionally on X is equal to its distribution conditionally on {Xn−S+1, . . . , Xn},

with S ≤ R.

The R-order hidden Markov model using hypothesis H 2 bis will be denoted by HMCR−S , with HMC1−1 denoting the

classical model. This new assumption is schematized by the dotted lines in Fig. 2.

Parameter S is the memory length of the class-conditional densities of observation and should be less than R (see

Appendix A). For n ≥ S, their expression becomes

fxn−S+1:n(yn) = p (yn | xn−S+1:n) . (3)

For n < S, fxn−S+1:n
(yn) is replaced by fxn, . . . , xn︸ ︷︷ ︸

S terms

(yn).

III. MPM CLASSIFICATION AND UNSUPERVISED PARAMETERS ESTIMATION

We start by defining the Bayesian MPM classification rule for the HMCR−S model and then propose an ICE-based parameters

estimation method for unsupervised segmentation.
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A. MPM classification

The restoration of hidden X from observed Y can be done by applying the Bayesian MPM criterion :

∀n ∈ [R, . . . , N ], x̂MPM

n (y) = zR with z1:R = arg max
xn−R+1:n∈ΩR

ξn(xn−R+1:n), (4)

where ξn(xn−R+1:n) = p (xn−R+1:n | y) are the marginal a posteriori probabilities. As for eq. (4), all next equations will be

given for n ≥ R ; equations for n < R can be deduced easily.

The HMCR−S model allows explicit computation of the MPM solution through an adaptation of the well-known Baum’s

“forward and backward” algorithm [28], modified by Devijver [29] for computational reasons:

αn(xn−R+1:n) = p (xn−R+1:n | y1:n) .

βn(xn−R+1:n) =
p

(
yn+1:N

∣∣ xn−R+1:n

)

p
(
yn+1:N

∣∣ y1:n

) .

Those probabilities can be computed recursively (see Appendix A). It can be shown that marginal a posteriori probabilities

needed to compute the MPM solution can be written1

ξn(xn−R+1:n) = αn(xn−R+1:n) βn(xn−R+1:n), (5)

and, for latter use, joint a posteriori probabilities Ψn(xn−R+1:n+1) = p (xn−R+1:n, xn+1 | y) as:

Ψn(xn−R+1:n+1) ∝ αn(xn−R+1:n) aR
xn+1|xn−R+1:n

fxn−S+2:n+1
(yn+1) βn+1(xn−R+2:n+1), (6)

with
∑

xn−R+1:n+1∈ΩR+1

Ψn(xn−R+1:n+1) = 1.

B. ICE-based unsupervised parameters estimation

In case of unsupervised classification, both Markov parameters M and data-driven parameters D must first be estimated,

only from the number of classes K and y, the noisy image we want to segment:

• The set M is made of the R-order transition matrix AR, and the initial probability vector π.

• The set D, characterizing the data-driven densities in Eq. (3), is made of the parameters of the KS densities fxn−S+1:n
(yn).

For R = S = 1, we find again the K densities fxn
(yn) of the classical HMC1−1 model. In the Gaussian case we consider

here, D is composed of means and variances of Gaussian pdf.

The estimation of all the parameters in Θ = {M,D} can be achieved using the general ICE procedure [10], [13], [15],

which is based on the conditional expectation of some estimators from the complete data (x, y). ICE is an iterative method

which produces a sequence of estimations θ[q] of each parameter θ ∈ Θ as follows:

1) Initialize θ[0] by using empirical estimators from completed data (x[0], y), with x[0] a segmentation of y obtained from

K-means algorithm for example. Denoting m̂i1,...,iS
and σ̂2

i1,...,iS
the empirical estimates of the mean and variance of

the Gaussian density fi1,...,iS
(y), we have:

m̂i1,...,iS
=

N∑

n=S

yn 1
[x

[0]
n−S+1:n=(i1,...,iS)]

N∑

n=S

1
[x

[0]
n−S+1:n=(i1,...,iS)]

. (7)

σ̂2
i1,...,iS

=

N∑

n=S

(yn − m̂i1,...,iS
)
2

1
[x

[0]
n−S+1:n=(i1,...,iS)]

N∑

n=S

1
[x

[0]
n−S+1:n=(i1,...,iS)]

. (8)

Empirical estimates âR
j|i1,··· ,iR

of R-order transition matrix entries can be computed from

π̂j =
1

N

N∑

n=1

1[x0
n=j], (9)

p̂ (i1, . . . , iR, j) =
1

N − R

N−1∑

n=R

1
[x

[0]
n−R+1:n+1=(i1,...,iR,j)]

. (10)

1Note that this is an entry-by-entry product, not a matrix one.
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2) Compute iteratively θ[q+1] using the mean of an estimator θ̂(X,Y ) of θ defined with the completed data, conditionally

to the observed data:

θ[q+1] = E
[
θ̂(X,Y )

∣∣∣ Y = y, θ[q]
]
. (11)

3) Stop the algorithm at iteration Q if, for all parameters θ in Θ, we get θ[Q−1] ≈ θ[Q].

This procedure leads to two different situations:

• For parameters in M, the conditional expectation can be computed analytically, similarly to the HMC1−1 case, by using

the high-order a posteriori probabilities in eq. (5) and (6). Re-estimation formulae are given by

a
R,[q+1]
j|i1,··· ,iR

=

N−1∑

n=R

ψ[q]
n (xn−R+1 = i1, . . . , xn = iR, xn+1 = j)

N−1∑

n=R

ξ[q]
n (xn−R+1 = i1, . . . , xn = iR)

.

π
[q+1]
j =

1

N − R + 1

N∑

n=R

∑

xn−R+2:n∈ΩR−1

ξ[q]
n (xn−R+1 = j,xn−R+2:n). (12)

Terms corresponding to n < R can be added to the sums, by using expressions of ξ and ψ for those indices, but their

numerical contribution is very limited since N ≫ R.

• For parameters in D, the conditional expectation in (11) is not tractable. However, it can be estimated by computing, at

each iteration q, the empirical mean of several estimates θ[q+1] = 1
L

∑L
ℓ=1 θ̂

(
x

[q]
[ℓ] ,y

)
(computed using eq. (7) and (8),

by replacing x[0] by x
[q]
[ℓ] ), where x[ℓ] is an a posteriori realization of X conditionally on Y . x[ℓ] can be easily simulated

using the fact that X | Y is a non homogeneous R-order Markov chain whose transitions matrices Ã
R

n , n ≥ R, at iteration

q + 1, are given by (see Appendix A)

ã
R,[q+1]
xn+1|xn−R+1:n

= p[q+1] (xn+1|xn−R+1:n, y)

=
aR

xn+1|xn−R+1:n
fxn−S+2:n+1(yn+1) βn+1(xn−R+2:n+1)

∑

xn+1∈Ω

aR
xn+1|xn−R+1:n

fxn−S+2:n+1
(yn+1) βn+1(xn−R+2:n+1)

. (13)

Remark: Supervised learning of parameters is trivial, using eq. (7) to (9), but requires samples from homogeneous areas as

well as samples exhibiting all kinds of transitions between regions. This is generally not the case in image processing since

samples are made of regions of homogeneous pixels and do not include borders between classes. Hence, probabilities such as

p (xn+1 = 2 | xn = 1) and densities like p (y | xn = 1, xn−1 = 2, . . .) can not be learned.

IV. EXPERIMENTAL RESULTS

This section is intended to give experimental results regarding the HMCR−S model presented above. Emphasis is given to

the impact of the value of R and S on the quality of unsupervised segmentation results. We first study a noisy simulated image

and then an ERS-SAR2 image showing an oil slick in the Mediterranean sea. Parameters initialization was performed with a

K-means classifier, ICE algorithm was stopped after 35 iterations for the noisy simulated image and 60 iterations for the SAR

image, and image classification was performed thanks to the Bayesian MPM criterion.

A. Noisy simulated image

Figure 3 shows the two classes original image, which is used latter as ground-truth, and the corresponding noisy simulated

image. The noisy image was generated by adding an independent Gaussian noise to each class of the original image, defined by

parameters (µ1 = 100, σ2
1 = 60) and (µ2 = 105, σ2

2 = 100), and then correlating the noises by applying the 3 × 3 smoothing

filter given by 


0 0.6 0

0.6 1.0 0.6
0 0.6 0





Unsupervised segmentations of image in Fig. 3(b) are presented in Fig. 4, for different values of R and S (with S ≤ R). The

resulting class images confirm the interest of the HMCR−S model since segmentations proved to be much more accurate in

2ERS-SAR : European Resource Sensing - Synthetic Aperture Radar
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Fig. 3. Synthetic data: (a) two classes original image, (b) noisy simulated image and (c) its histogram.

R = 1 R = 2 R = 3

S = 1

τ = 13.82%, M = 1, t = 9s τ = 13.93%, M = 1.20, t = 20s τ = 13.70%, M = 1.59, t = 40s

S = 2

τ = 12.11%, M = 1.25, t = 20s τ = 12.01%, M = 1.64, t = 41s

S = 3

τ = 10.60%, M = 1.74, t = 42s

Fig. 4. Unsupervised segmentation results of the noisy image in Fig. 3. τ is the segmentation error rate. M refers to the memory required to estimate
parameters with reference to the HMC1−1 model. t refers to the computing time (in seconds).

term of homogeneity when R and S increase. From misclassification rates (τ ), memory requirements for parameter estimation

(M) and computing times (t), the following points can by underlined

• The error rate does not improve with the increasing of R (S being constant). This confirms results published earlier with

Markov chain of order 2 (cf [24] for an example in speech recognition). However, the error rate reduces sensibly when

R = S increases, starting from τ = 13.82% for the classical HMC1−1 model to τ = 10.60% for the HMC3−3 model. The

error rate still decreases, but more slowly, for higher values of R = S: τ = 9.83% (resp. τ = 9.16%) for the HMC4−4

(resp. HMC5−5) model.

• The memory requirement increases exponentially with the raise of R and S. Starting from a reference of M = 1 for the

classical HMC1−1 model, the HMC3−3 model reaches a factor of M = 1.74, and even M = 2.72 (resp. M = 4.68) for
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TABLE I
ESTIMATED PARAMETERS FOR THE HMC2−2 MODEL. LEFT: TRANSITION MATRIX A

2 . MIDDLE: INTERMEDIATE TRANSITION MATRIX A
1 . RIGHT: A

PRIORI PROBABILITIES π.

xn−1 xn xn+1 a2
xn+1|xn−1,xn

1 1 1 0.97515

1 1 2 0.0248778

1 2 1 0.0197173

1 2 2 0.980283

2 1 1 0.954396

2 1 2 0.0455927

2 2 1 0.0323991

2 2 2 0.967566

xn xn+1 a1
xn+1|xn

1 1 0.974623

1 2 0.0254035

2 1 0.0319929

2 2 0.967973

xn+1 πxn+1

1 0.557663

2 0.442337

(a) size: 512 × 512

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0  100  200  300  400  500  600

(b)

Fig. 5. ERS-SAR image of an oil slick in the Mediterranean sea (a) and its histogram (b).

the HMC4−4 (resp. HMC5−5) model. As a consequence, large size images may cause memory overflow.

• The computing time also increases exponentially when R raises. On the other hand, the data-driven memory length S has

nearly no impact on model complexity. For the HMC4−4 (resp. HMC5−5) model, we get t = 92 sec. (resp. t = 109 sec.).

As an example, Table I shows all Markovian parameters estimated for the HMC2−2 model which has given the segmented

image in Fig. 4. The mean values of the data-driven Gaussian densities f1,1(y), f1,2(y), f2,1(y) and f2,2(y) were estimated

to 99.96, 103.03, 103.06 and 105.69 respectively.

B. Synthetic aperture radar image

Fig. 5 is an excerpt of an ERS-SAR image, acquired in the third of October 1992, showing an oil spill to be segmented

from the free sea near the Egyptian coast. This scene is a typical spill in the Mediterranean sea. The spill appears in black

in this SAR image since oil on the water reduces air-sea interaction and results in the dampening of the capillary (surface)

waves [30]. To follow Goodman’s approach and the multiplicative nature of noise in SAR data, we use Gamma laws instead

of Gaussian ones. Fig. 6 shows the maps obtained from the segmentation with the classical HMC1−1 model, and with the

HMC2−2 and HMC3−3 models.

The HMC1−1 model produces a map with a high level of false alarms, integrating numerous pixels from the free sea to the

spill class. The HMC2−2 segmentation is much more reliable and produce an accurate cartography of the spill with almost

no detection error. Hence, in this image a memory length of two is able to learn the complex noise structure associated to

the waves whereas a memory length of one is not. The HMC2−2 result is similar to the one obtained by segmenting a multi-

scale decomposition of the image with a vectorial HMC1−1 model [31]. The HMC3−3 model does not improve classification

with respect to the HMC2−2 one, confirming that a compromise must be find between the complexity of the model and the

application.

V. CONCLUSION

In this work we described an extension of higher-order Hidden Markov Chains for unsupervised classification. While the

model is evaluated for image processing, the algorithms is of interest in all classical fields of application of HMC (speech

processing, genomic, economy, pattern recognition. . . ). The main novelty was to introduce a memory S for the data-driven

densities arising in the model, in parallel to the memory of the Markov process R. An extension of the general ICE procedure

was proposed in order to estimate all parameters, making the overall algorithm unsupervised. Classification was performed

7



(a) R = S = 1, t = 66s (b) R = S = 2, t = 139s (c) R = S = 3, t = 294s

Fig. 6. Segmentation results obtained with the HMCR−S model for different values of R = S.

with the Maximal Posterior Mode Bayesian criterion, while the extension of the Viterbi algorithm [16] to achieve Maximum

A Posteriori classification is an interesting perspective to this work.

Experiments on simulated data and SAR images confirm the interest of the HMCR−S model with respect to the HMC1−1

one. Indeed, the HMCR−S model, which integrates more neighboring pixels, reveals very performing for modeling complex

spatial relationships between pixels and, as a consequence, managing strong and possibly correlated noises. However, this is to

the cost of higher memory and computing time requirements as R and S raise. In a near future, we plan to extent the Gaussian

data-driven densities assumed in this work to deal with generalized mixture through the Pearson’s system of distributions for

example [13], [32].

APPENDIX

HMCR−S FORWARD RECURSIONS

HMCR−S forward probabilities can be computed recursively. For R < n ≤ N and denoting

Sn = p
(
yn | y1:n−1

)
=

∑

xn−R+1,...,xn∈Ω

p
(
xn−R+1:n, yn | y1:n−1

)
,

we get

αn(xn−R+1:n) = p (xn−R+1:n | y1:n) =
1

Sn

p
(
xn−R+1:n, yn | y1:n−1

)

=
1

Sn

∑

xn−R∈Ω

p
(
xn−R:n−1, xn, yn | y1:n−1

)

=
1

Sn

∑

xn−R∈Ω

p
(
xn, yn | xn−R:n−1, y1:n−1

)
p

(
xn−R:n−1 | y1:n−1

)

=
1

Sn

∑

xn−R∈Ω

p
(
yn | xn−R:n, y1:n−1

)
p

(
xn | xn−R:n−1, y1:n−1

)
αn−1(xn−R:n−1)

=
1

Sn

p (yn | xn−R+1:n)
∑

xn−R∈Ω

αn−1(xn−R:n−1) aR
xn|xn−R:n−1

.

Using assumption H 2 bis, p (yn | xn−R+1:n) is written fxn−S+1:n(yn), with S ≤ R. For R = S = 1, we find the desired

expression.

Recursions for n ≤ R can be easily deduced :

• When R > 1, for 1 < n ≤ R: αn(x1:n) ∝ fx1:n(yn) αn−1(x1:n−1) an−1
xn|x1:n−1

.

• For n = 1: αn(x1) ∝ fx1:n(y1) πx1 .

When n < S, fx1:n(yn) is replaced by fxn, . . . , xn︸ ︷︷ ︸
S terms

(yn).
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HMCR−S BACKWARD RECURSIONS

HMCR−S backward probabilities can be computed recursively. Using βn(xn−R+1:n) = 1 for n = N , we get for R ≤ n < N

:

βn(xn−R+1:n) =
p

(
yn+1:N

∣∣ xn−R+1:n

)

p
(
yn+1:N

∣∣ y1:n

)

=
1

Sn+1

∑

xn+1∈Ω

p
(
yn+1:N , xn+1

∣∣ xn−R+1:n

)

p
(
yn+2:N

∣∣ y1:n+1

)

=
1

Sn+1

∑

xn+1∈Ω

p
(
yn+1:N

∣∣ xn−R+1:n+1

)
p (xn+1 | xn−R+1:n)

p
(
yn+2:N

∣∣ y1:n+1

)

=
1

Sn+1

∑

xn+1∈Ω

p
(
yn+1 | yn+2:N , xn−R+1:n+1

)
p

(
yn+2:N

∣∣ xn−R+1:n+1

)
aR

xn+1|xn−R+1:n

p
(
yn+2:N

∣∣ y1:n+1

)

=
1

Sn+1

∑

xn+1∈Ω

p (yn+1 | xn−R+2:n+1) βn+1(xn−R+2:n+1) aR
xn+1|xn−R+1:n

.

Using assumption H 2 bis, p (yn+1 | xn−R+2:n+1) is written fxn−S+2:n+1
(yn+1), with S ≤ R. For R = S = 1, we find the

desired expression.

Recursions for n < R can be easily deduced :

• When R > 1, for 1 ≤ n < R: βn(x1:n) ∝
∑

xn+1∈Ω

p (yn+1 | x2:n+1) βn+1(x2:n+1) an
xn+1|x1:n

.

When n + 1 < S, fx1:n+1
(yn+1) is replaced by fxn+1, . . . , xn+1︸ ︷︷ ︸

S terms

(yn+1).

HMCR−S A POSTERIORI TRANSITION MATRICES

Entries ãR
xn+1|xn−R+1:n

of the a posteriori transition matrices Ã
R

n with n ≥ R can be computed according to:

ãR
xn+1|xn−R+1:n

= p (xn+1 | xn−R+1:n, y) = p (xn+1 | x1:n−R,xn−R+1:n, y)

=
p (x1:n−R,xn−R+1:n, xn+1 | y)

p (x1:n−R, xn−R+1:n | y)

=

∑

xn+2,...,xN∈Ω

p (x | y)

∑

xn+1,...,xN∈Ω

p (x | y)
=

∑

xn+2,...,xN∈Ω

p (x, y)

∑

xn+1,...,xN∈Ω

p (x, y)
.

By using the joint law given in eq. (2) and introducing the H 2 bis assumption, we get

ã
R
xn+1|xn−R+1:n

=

a
R
xn+1|xn−R+1:n

fxn−S+2:n+1
(yn+1)

∑

xn+2,...,xN ∈Ω

a
R
xn+2|xn−R+2:n+1

fxn−S+3:n+2
(yn+2) . . . a

R
xN |xN−R:N−1

fxN−S+1:N
(yN )

∑

xn+1,...,xN ∈Ω

a
R
xn+1|xn−R+1:n

fxn−S+2:n+1
(yn+1) . . . a

R
xN |xN−R:N−1

fxN−S+1:N
(yN )

.

By using the backward recursions above, we finally get

ãR
xn+1|xn−R+1:n

=
aR

xn+1|xn−R+1:n
fxn−S+2:n+1

(yn+1) βn+1(xn−R+2:n+1)
∑

xn+1∈Ω

aR
xn+1|xn−R+1:n

fxn−S+2:n+1(yn+1) βn+1(xn−R+2:n+1)
.

For 1 ≤ n < R, entries ãn
xn+1|x1:n

can be deduced in a similar way.
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