Robust and efficient Fourier-Mellin transform approximations for invariant grey-level image description and reconstruction
Résumé
This paper addresses the gray-level image representation ability of the Fourier-Mellin Transform (FMT) for pattern recognition, reconstruction and image database retrieval. The main practical di±culty of the FMT lies in the accuracy and e±ciency of its numerical approximation and we propose three estimations of its analytical extension. Comparison of these approximations is performed from discrete and ¯nite-extent sets of Fourier- Mellin harmonics by means of experiments in: (i) image reconstruction via both visual inspection and the computation of a reconstruction error; and (ii) pattern recognition and discrimination by using a complete and convergent set of features invariant under planar similarities. Experimental results on real gray-level images show that it is possible to recover an image to within a speci¯ed degree of accuracy and to classify objects reliably even when a large set of descriptors is used. Finally, an example will be given, illustrating both theoretical and numerical results in the context of content-based image retrieval.
Domaines
Recherche d'information [cs.IR]Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...