The squares of the Laplacian-Dirichlet eigenfunctions are generically linearly independent - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2009

The squares of the Laplacian-Dirichlet eigenfunctions are generically linearly independent

Résumé

The paper deals with the genericity of domain-dependent spectral properties of the Laplacian-Dirichlet operator. In particular we prove that, generically, the squares of the eigenfunctions form a free family. We also show that the spectrum is generically non-resonant. The results are obtained by applying global perturbations of the domains and exploiting analytic perturbation properties. The work is motivated by two applications: an existence result for the problem of maximizing the rate of exponential decay of a damped membrane and an approximate controllability result for the bilinear Schrödinger equation.
Fichier principal
Vignette du fichier
genSquare_hal_second.pdf (157.1 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00322301 , version 1 (17-09-2008)
hal-00322301 , version 2 (19-05-2009)
hal-00322301 , version 3 (11-09-2009)

Identifiants

Citer

Yannick Privat, Mario Sigalotti. The squares of the Laplacian-Dirichlet eigenfunctions are generically linearly independent. 2009. ⟨hal-00322301v2⟩
223 Consultations
281 Téléchargements

Altmetric

Partager

More