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THE SQUARES OF THE LAPLACIAN-DIRICHLET
EIGENFUNCTIONS ARE GENERICALLY LINEARLY INDEPENDENT

YANNICK PRIVAT AND MARIO SIGALOTTI

ABSTRACT. The paper deals with the genericity of domain-dependesdttsgl

properties of the Laplacian-Dirichlet operator. In parté&r we prove that, gener-
ically, the squares of the eigenfunctions form a free familje also show that
the spectrum is generically non-resonant. The results latared by applying
global perturbations of the domains and exploiting analpgrturbation prop-
erties. The work is motivated by two applications: an exiseeresult for the
problem of maximizing the rate of exponential decay of a dednmembrane
and an approximate controllability result for the bilin&ahrodinger equation.

INTRODUCTION

Genericity is a measure of how much robust and frequent aepiofs. It enjoys,
therefore, a deep-rooted success in control theory, wheyenaric behavior is,
roughly speaking, the expected behavior of systems imglphysical quantities
whose value can only be approximated.

A paradigmatic example of generic properties in controbtlies the controllabil-
ity of a finite-dimensional linear system

@ i =Ax+ Bu, v € R", ueR™

It is well known, and the proof simply follows from the Kalmariterion, that for
every choice of the positive integetsandm a generic linear system of typf (1) is
controllable. More precisely, the set of paijrs, B) for which () is controllable
is open and dense in the product of the spaces>ofn andn x m matrices. (See,
for instance, [26].)

When a control system involves partial differential eqomasi, conditions guaran-
teeing its controllability, observability or stabilizdiby can often be stated in terms
of the eigenvalues or eigenspaces of some linear operggucdtly, the leading
term of the evolution operator). In this paper we are maintgriested in condi-
tions depending on the domain on which the control systenadfgb differential
equations is defined. The genericity of some relevant cimmgitfor control appli-
cations has already been considered and proved in the §&aktaf partial differ-
ential equations (e.g., the simplicity of the eigenvalukethe Laplacian-Dirichlet
operator proved in[[2{, ?8] and applied in the control frarmewin [L§]). Others,
due to their technical nature, need to be tackled by specijicnaents. This has
led to the development of several tools for studying the geitye with respect to
the domain of control-related properties of partial diigial operators. Without
seeking exhaustiveness, let us mention the works by LiodsZalazua [[1}7] and
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Ortega and Zuazud [23] on the Stokes system, those by Omegauazual[37, 24]
on the plate equation, the paper by Chitour, Coron and Glwg@} on the heat
and wave equations and the recent work by Beauchard, ChKaiieb and Long
[B] on the Schrodinger equation.

The scope of this paper is to prove the genericity with respethe domain of

some properties of the Laplacian-Dirichlet operator isg@iiom control theory and
optimization among which, in particular, the linear indegence of the squared
eigenfunctions.

In doing so we propose a technique that, we believe, has a wédge of ap-
plicability, going beyond the conditions studied here addpable to different
operators. The difference between our approach and thosdyuadopted is that
we focus less on local infinitesimal variations of the doneail more on global,
long-range perturbations. In order to get genericity tsdubm this kind of pertur-
bations we have to rely on analytic-dependence propediethé eigenvalues and
eigenfunctions of the Laplacian-Dirichlet operator widspect to analytic pertur-
bations of the domain. (It should be stressed, however ahallytic perturbation
theory applies to a much larger range of operators.) Theafl@aoving generic-
ity through global perturbations is clearly not new, beinginsically contained in
analytic perturbation theory. Our work has actually beespiired by a paper by
Hillairet and Judge[[14], where the authors prove, usindal@erturbations, the
generic simplicity of the eigenvalues of the Laplacianigbilet operator on pla-
nar polygons with at least four vertices. The argument ifj,[tidwever, relies on
the existence, in the class of interest, of domains havinglg spectrum. The
difficulty of extending the proof of[[14] to show the generigdar independence
of the squared eigenfunctions on smooth domains is that gheznof smooth do-
mains having the desired property are not handily availaBlee kind of domain
on which the property can be easily checked is given by coffed. However,
many results on spectral stability when non-smooth domaiespproximated by
smooth ones are known (see, in particular, the work by Aremdt Daners[]3]
where uniform stability of the eigenfunctions is studiediiamply the existence,
for everyn € N, of a smooth domairk,, whose firstn eigenfunctions have lin-
early independent squares. In order to propagate by glotzdytic perturbation
the property satisfied bfR,, one can use, for instance, exponential flows of vector
fields (even a narrow family of vector fields is enough to geteen full orbit of
domains, seqJ1]). One has, however, to take care of thelpessissing of the
analytically depending eigenvalues. In order to do so, ¢traeilsl select analytic
paths along which the firgt eigenvalues are simple. This problem is related to
the Arnold conjecture (sed][4] 9]) and has been solved by Teyt¢l|n [P&tel's
result, recalled in Propositiqn 2, is crucial for the pragabperturbation technique
(Theoremg]3 anf] 4).

Let us conclude this introduction by describing the moithgiapplications of the
properties that we consider. The generic linear indepeselefthe squared eigen-
functions has been conjectured in dimension two by HébaadiHenrot in [T}L],
where the authors consider the problem of stabilizing withlargest possible de-
cay rate a membrane fixed at its boundary using a dampinggamtira portion of
the membrane of fixed area. The existence and uniqueness sbliltion for this
problem can be deduced from the linear independence of theresd eigenfunc-
tions of the Laplacian-Dirichlet operator on the domairefillby the membrane.
(See Sectiof] 2 for more details.)
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It should be noticed that whether such linear independennetionly generic but
rather always true is still an open question. A negativeltésuMahar and Willner

[Lg] on the squared eigenfunctions of a Sturm-Liouville raper justify a cautious
stance toward a conjecture saying that the linear indepmedghould always hold
true.

Linear independence of the squared eigenfunctions appeéaesnaturally also in
the study of the controllability of the bilinear Schrodergquation. In this context,
indeed, non-resonance conditions on the spectrum of thentnedied Schrodinger
operator are often required (see, for instanle, [7]). Sine&™ eigenvalue\;, of
—A+eV i H?(Q) N HL(Q) — L?(Q) is analytic with respect te and satisfies

d
2 = [ vt

where (¢, )ncn is @ complete system of eigenfunctions-ef\ (see []), then the
linear independence of the famify? ),.cn clearly plays a role in the study of the
size of the family of potentiald” for which the spectrum has some prescribed
property.

Another application discussed in Sect[dn 2 correspondse@ase where the un-
controlled Schrodinger operator is defined by a potental,we.,V = 0 and{2 is
free. We show in this case that, generically with respeét,tao nontrivial linear
combination with rational coefficients of the eigenvalués-@\ annihilates. We
deduce from this fact and the results [ [7] a generic appnasé controllability
property for the Schrodinger equation.

e=0

Properties about the non-annihilation of linear comboratiof eigenvalues play a
role also in other domains. Let us mention, for instancerghent work by Zuazua
on switching systems in infinite dimensidn][29], where thediton that the sums
of two different pairs of eigenvalues of the Laplacian-Bhifet operator are dif-

ferent is used to prove null-controllability of the heat ation using switching

controls.

The paper is organized as follows: in Sectjpn 1 we introdereesdefinitions and
notations and we prove the main abstract results of the p@jeoremd]3 and
A). We conclude the section by deducing from the abstracitseesome specific
generic conditions; in particular, we obtain the genenedr independence of the
squared eigenfunctions of the Laplacian-Dirichlet opm@ratn Sectiof2 we pro-
pose two applications of these generic properties to thmligktion of vibrating
membranes and to the controllability of the Schrodingeratign.

Acknowledgments. We would like to thank Yacine Chitour, Antoine Henrot and
Enrigue Zuazua for several fruitful discussions and advice

1. GENERIC PROPERTIES BY GLOBAL PERTURBATIONS

1.1. Notations and abstract genericity result. Throughout the paped denotes
an integer larger than or equal to two aNdhe set of positive integer numbers,
while Ny = {0} UN.

Given a Lipschitz domaif2 ¢ R?, we denote by(\?),cn the nondecreasing
sequence of eigenvalues of the Laplacian-Dirichlet operat

—A: H*(Q) N HNQ) — L*(Q)
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counted according to their multiplicity. As it is well knowit is always possible
to choose an orthonormal basisiof(©2) made of eigenfunctions of the Laplacian-
Dirichlet operator. In the sequel any such choice will beaded by(¢S}),,cxy with
#5 corresponding to the eigenvalu€. We will identify ¢! with its extension to
zero outside).

We define the class of domaibis, as the set of open subsetsRsfwith C™ bound-
ary. By D,,, we denote the subset &f,,, of C" topological balls i.e., those open
subsets) of R? such that there existsé-diffeomorphism ofR? transforming the
unit ball in€2. Similarly, we defineD, ; as the orbit of the unit ball by bi-Lipschitz
homeomorphisms dR?.

It is well known that},,, and D,,,, endowed with th&€™ topology inherited from
that of C™-diffeomorphisms, are complete metric spaces (5de [18]patticular,
they are Baire spaces.

Let us recall that, given a Baire spadg a residual set (i.e. the intersection of
countably many open and dense subsets) is den&e iA boolean functiorP :

X — {0,1} is said to begenericin X if there exists a residual sét such that
everyz in Y satisfies propert, that is,P(x) = 1.

A sequence of open domaif€,,),cn is said tocompactly converge a domain
Q if for every compact sekk C Q U Q°, there existsux € N such that for all
n>ng, KCQ,UQ,".

In the sequel of the paper, we make use several times of tloe/foy result, whose
proof can be found in]J3, Theorem 7.3].

Proposition 1. Letn € N and fix a Lipschitz domaift ¢ R? such that\, ... \?

are simple. Lef); be a sequence of Lipschitz domains compactly convergify to
and such that)en(y, is bounded. Then* — XS and, therefore ™ is simple
for everyj = 1,...,n, for k large enough. Moreover, up to a sign in the choice of
¢§?k, ¢?k — ¢fin L (RY), ask goes to infinity, forj = 1,...,n.

Another result playing a crucial role in our argument is thiéofving theorem, due
to Teytel (see[[47, Theorem 6.4]).

Proposition 2. Letm > 2 and Qg, £; be two simply connected domainsRsf
that areC™-differentiably isotopic to the unit-dimensional ball. Then there exists
an analytic curvd0, 1] > ¢ — @, of C"-diffeomorphisms such thé}, is equal to
the identity,Q1(Qy) = Q1 and every domaif2; = Q(€y) has simple spectrum
for t in the open interva(0, 1).

Teytel deduces the proposition stated above from a more@ersult, namely[[37,
Theorem B], that guarantees the existence of an analytic gdadimple-spectrum
operators among any elements of a family of operators gatgsh strong Arnold
hypothesin theirs eigenvectors (see al§p [, 9]). For this reasonxpect that
our method could be adapted to other situations.

We are ready to prove the following theorem on generic ptagsamong topolog-
ical balls.

Theorem 3. Let F, : R"»*1) — R n e N, be a sequence of analytic func-
tions. For everyn € N, we say that a Lipschitz domain satisfies propertyP,,
if A2,..., A are simple and if there exist pointszy, ..., z, in © and a choice
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#L, ..., ¢Sk of the firstn eigenfunctions of the Laplacian-Dirichlet operator &n
such that

2 Fu(¢f(@1), -, 032 (@1), o 8L (@), - e (mn), AT AY) # 0.

Assume that, for every < N, there existskR,, € Dy satisfying propertyp,.
Then, for everyn € NU {+o0}, a generic2 € D,,, satisfiesP,, for everyn € N.

Proof. Fix m € NU {+oco}. Define, for everyn € N, the set of domains
A, ={Q € D, |  satisfiesP,, }.
We shall fixn € N and prove that eacH,, is open and dense iD,,,.

Let us first prove that4d,, is open. FixQ2 € A,, a choice of eigenfunctions
#%,..., ¢ andn pointszy,...,z, € Q such that[[2) holds true. Suppose by
contradiction that there exists a sequef@g).cy In D, \ A,, that converges to
). Notice that the convergence in,,, implies compact convergence in the sense
recalled above. Propositigh 1 thus implies that, for aahoib;b?’“, j=1,...,n,
one has

i F (67 (@), 6 () AT AR =

This contradicts the assumption tl§at ¢ A,, for everyk € N.

We prove now the density ofl,,. Notice that, without loss of generality; > 2.

Fix @ € D,,. LetR,, be as in the statement of the theorem, thaRls, € Dy
and satisfies propert,,. Notice thatR,, can be approximated by a sequence of
domains inD,, in the sense of the compact convergence. Therefore, byiagply
the same argument as above, we deduce that there BYists D, , satisfyingP,,.

Choosegzbf”,j =1,...,n,andzq,...,z, € R, such that
Ep(@7m (1), 08 (), A ARy £ 0,

We now apply Propositiof] 2 witf}y = R, andQ; = Q. We deduce that, fon >

2, there exists an analytic cur{@ 1] > ¢ — @, of C""-diffeomorphisms such that
Qo is equal to the identity; (R,,) = 2 and every domaif), = Q;(R,,) € Dy,
has simple spectrum farin the open interval0, 1). Due to standard analytic
perturbation theory (se(ﬂ15])\§f'S are analytic functions of and there exists a
choice of¢§“,j =1,...,n,t €[0,1], such that;ﬁ?t o (Q; varies analytically with

respect t¢ in C"™(R,,). In particular,

t o B¢ (Qu(x1))s -+ 02 (Qulan)), A, AS)

is an analytic real-valued function. Since its value at 0 is different from zero,
then it annihilates only for finitely manye [0, 1].

Hence, as required) can be approximated arbitrarily well iR,,, by an element
of A,. O

Let us turn our attention to domains that are not necesdagiglogical balls. The
point where this topological assumption plays a fundanemta in the proof
above is in the application of Propositiph 2 guaranteeireg gmooth topologi-
cal balls can be deformed one into another through an aogbgtih preserving
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the strict order of the eigenvalues. In order to extend theegeity result to do-
mains inX,,, we impose a more restrictive assumption on the family ofyaica
test functionsF,,. Roughly speaking, we ask it to be invariant by reorderintghef
eigenvalues.

Theorem 4. LetF,, : R*("+1) _ . R n e N, bea sequence of analytic functions.
For everyn € N defineJ,, as the subset di” made of alln-uples of pairwise
distinct positive integer numbers. Givgn= (j1,...,j,) in J,, we say that a
Lipschitz domair? satisfies propertysj if )\ﬁ, ce )\?n are simple and if there exist
n pointszi,. .., z, in Q and a choicepy’, . .., ¢§ of the firstj,, eigenfunctions of
the Laplacian-Dirichlet operator of2 such that

Assume that, for every € N andj € J,, there existsfzj € Dy, satisfying
propertyﬁj. Then, for everyn € NU {400}, a genericQ2 € %, satisfies‘ﬁj for
everyj € Upendp.

Proof. Fixm € NU{+oco}. Notice that, by ordering, := U,enJp, the hypothe-
ses of the theorem are easily transformed in a special cabess of Theorerf] 3.
Therefore, a generi2 € D,, satisfiesP; for every;j € J,. Fix one such? and

notice that, in particular, the spectruin{?),.cy is simple.
Define, for every) € J, the set

Aj = {2 e %, | QsatisfiesP; }.

The openness Qﬁj in 3J,,, can be proved following exactly the same argument
used in the proof of Theoreff 3 to show that eaGhis open inD,,,.

We are left to prove thatftj is dense inx,,. TakeQ) € ¥,,. Let B be an open
ball of R? containing). By eventually shrinking3, we can assume thatB N 05
contains at least one poipt Up to a change of coordinates, we can assumeRhat
is centered at the origin and= (0,...,0,1).

Consider a smooth vector field @f satisfying

r1xq
' if 27+ + 22 <
V(zy,...,2q) = 174 ! @’
2 2
2 r{+-Fzi+1
Tg— =g o )
0 faxf+---+x;>p+1

for somep > 1. The behavior o/ in a neighborhood of the unit ball is represented
in Figure[l. Notice that’ is complete, since it vanishes outside a compact set.

By constructionV is everywhere tangent @B. The ball B is therefore invariant
for the flow of V. Notice that the points and—p are the only zeros df in B and
thatz, is strictly decreasing along all trajectoriesdfstaying inB. Thereforep
is a repulsive equilibrium fol restricted taB and—p an attractive one.

Notice that, sincé&? € >, then its boundary has finitely many components and
therefore there exists a bd¥ contained inf2 such thap € 9B’. Notice, moreover,
that the differential ot at+p is +Id. Then, for everyr € B, e~*V (x) belongs
to B’ for everyt larger than some, € R. We deduce that'V (B’) compactly
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FIGURE 1. Phase portrait of the vector field

converges toB ast tends to infinity. SinceB’ C €, thene!V (Q) compactly
converges ta as well ag — +4o0.

Consider an analytic path— @, of C™-diffeomorphisms oR? such that), = Id
andQ;(B) = Q, whose existence can be deduced from Propodilion 2. Then

O = Qzarctant 0 €'V () compactly converges 1@ ast — +oc.

Moreover,t — €); is an analytic path irt,,. Hence, there exist analytic func-
tions Ay,..., A, : [0,400) — R such thatA,(0) = A and Ax(t) is in the
spectrum of the Laplacian-Dirichlet operator Qp, for £k = 1,...,n. Moreover,
there exist: functions®y, . .., ®,, defined o0, +oo) such that®(t) € C°(£Y)
is an eigenfunction correspondingAq(t), fork = 1,...,nandt € [0, +oc0), and
t = ®p(t) 0 Qaarciant 0 e varies analytically with respect toin C™ (). Let us

write @y (t, z) for the evaluation ofb,(¢) at a pointz € ;.
We claim that eachA; (¢) converges, as— +oo, to an eigenvalue of the Laplacian-

Dirichlet operator orf). Indeed, the compact convergencehfto {2 implies the
strong convergence of the corresponding resolvant operéee, for instancef][3]).
This, in turns, guarantees th|a\1?t — A?| < e(t) with (t) independent of and
converging to zero as — +oo. Hence, there existd/ € N such that for ev-
eryt > 0 and everyk = 1,...,n there exists < M such thatA(¢t) = )\?t.
In particular, according to Propostitidgh 1, there eXist . ..,i,) € J, such that

Ak(t)—>)\§z ast — +oofork=1,...,n.

Moreover, up to a sign in the choice ¢fi, we can assume that(t) — ¢§z in

L>®(R%), ast — oo, for k = 1,...,n. The choice of) guarantees that it contains
x1,...,T, such that

Fu(@2 (1), 02 (20), A2, A2) £ 0,

For T large enoughrq, . .., x, belong to). and

E (Pi(r,21),. .., Pp(T,20), A1 (7), ..., Ap(7)) # 0.
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Fix one suchr and define
i’k - e_TV o Q;;rctanf (wk)
fork =1,...,n. Therefore,

t = Fn(q)l(t, QQarctant Oetv(jl))7 e 7®n(t, QQarctant Oetv(.@n)), Al (t), “ e 7An(t))

is an analytic real-valued function which has a nonzeroe/&ut¢ = r. Hence,
there existg arbitrarily small such that

Fn(<bl(t, Q2arctantoetv(j1)), e ,q)n(t, Q2arctantoetv(jn)), Al (t), e ,An(t)) 7é 0.

Since, fort small enoughA(t) = )\2:, we deduce thaf2 can be approximated
arbitrarily well in 33,,, by an element ojflj. O

1.2. Consequences of the abstract resultsin this section, we present two corol-
laries of Theorenj]4 showing that (i) the squares of the Lag@taBirichlet eigen-
functions are generically linearly independent and (&) ttlaplacian-Dirichlet spec-
trum is generically non-resonant.

Recall that a finite or infinite sequence of real numbers id &abenon-resonant
if every nontrivial rational linear combination of finiteljany of its elements is
different from zero.

In order to verify that the squares of the Laplacian-Dirthtigenfunctions on
a suitably chosenl-orthotope are linearly independent, we prove the follgvin
technical result.

Lemma5. Lety belong taC>° ([0, +0),R), N be a positive integer an@, . .., an)
be a sequence of pairwise distinct positive real numbersure that there exist
lo € Ng andl; € N such thatp(o+Ph)(0) £ 0 for everyp = 0,...,N — 1.
Then, the functions(a;-),...,p(an-) are linearly independent on every right-
neighborhood of zero.

Proof. We are interested in finding all th€-tuples(yy,...,vy) € RY such that
fo:l vrp(ak-) = 0 in aright-neighborhood of zero. Differentiating this téa
lo + pl, times yields the relatiod 5, val 7" pUo+Ph) (g,.) = 0. Evaluating
such relation atzerofgr=10,..., N—1, we obtain a system a@¥ linear equations
in the N variablesyy, ..., vn. Since(a?(’_l))lgi,jSN is a Vandermonde matrix,
the determinandy of the N x N matrix underlying such a system writes

on = det (( o 1))1<z,g<N) Haloﬁﬁlﬁkh)(o)

k=1
_ H CL-O lo H alo (lo+k’l1 (0) # 0.
1<i<j<N
This concludes the proof of the lemma. O
Proposition 6. Let(u1, ..., uq) be a non-resonant sequence of positive real num-

bers andR be thed-orthotope]_[le(o, u;7). Then, the Laplacian-Dirichlet eigen-
values ofR are simple and the squares of the Laplacian-Dirichlet efgantions
are linearly independent.
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Proof. Let us prove the lemma by induction drn> 1.

If d =1, thenu, is any positive real number and the squared eigenfunctibtieo
Laplacian-Dirichlet operator oR are(sin?(k - /u1))ren. The proposition follows
then from Lemmd]5, applied to(x) = sin?(x), lp = 1,1} = 2, anday = k/p;1.

Let now d be larger than one. FaK = (ki,...,kq) € N4, we write K/ =
(k1,...,kq—1), K = kq and we denote by x the (un-normalized) Laplacian-
Dirichlet eigenfunction

d kix;
fr(x1,... zq) = Hsin( ’ 'Z> )

Clearly, fK(wl, e ,xd) = fK/(wl, C ,(L‘d_l) sin(l?xd/,ud). EIX I _C N¢ finite
and{yx | K € I} C Rsuchthafy" ., 7xf& =00onR. Let] = {K | K € I}.
Then for every(z1, . .., zq_1) € [[°=; (0, usw) and everyry € (0, jugm) we have

Z Z Vi frr (1, Tg-1)? | sin’ <@>:0.

kel \Kel K=k Hd

Therefore, applying again Lemnfla 5¢@x) = sin?(x), we deduce that, for every
kel,

d—1
Z Yk fZ, =0 on H(O,/mr).
Kel, K=k i=1
The induction hypothesis implies thak is equal to zero for ever)K such that
K = k. Sincek is arbitrary inI, the proposition is proved. 0O

We can now state the first corollary of Theorfm 4.

Corollary 7. Letm € NU {co}. Generically with respect t& € ¥,,,, the squares
of the Laplacian-Dirichlet eigenfunctions are linearlydependent when restricted
to any measurable subset@fof positive measure.

Proof. First notice that functionsyp, . . ., ¢, defined on a domaif® are linearly
independent if and only if there existpointsz, .. ., z, in 2 such that
o1(z1) ... on(z)
det : : # 0.
©1(Tn) - pn(Tn)
Apply Theoren{}§ with
n ceo YUn

Fn(yla"'>yn(n+1)) = det ’
Yn2—n+1 --- Yn2

for (y1,. ... Yn(ny1)) € RM™D, andR; = R for every;j € J,, whereR is the
d-orthotope introduced in the statement of Proposifion 6.

Then for a generi€2 € ¥, the squares of the Laplacian-Dirichlet eigenfunctions
are linearly independent dn. Assume that there exists a measurable subset

Q of positive measure anl constantsyy, . . ., vx such thad ", 1. (2)? = 0

on O. Recall now that the hypo-analyticity of the Laplacian @ter implies that
each eigenfunction is analytic insiéle Hencey; = --- = v = 0. (]



10 YANNICK PRIVAT AND MARIO SIGALOTTI

Corollary[J can be used to get generic spectral properties[RS, Section 6.3].
Another consequence of Theorgn 4 is the following corallary

Corollary 8. Fixm € NU {oco}, k € Nandq = (q1,...,q) € R¥\ {0}. Then,
for a genericQ2 € ¥,,, one has

k
(4) > A #0.

I=1
In particular, a generic) € 3, has non-resonant spectrum.

Proof. Let R be ad-orthotope defined as in the statement of Proposfijon 6.
We denote by the subset ofR defined by

I'={(z1,...,2q) € OR | xg = par}.

Consider a perturbatioR' := (Id + tV')(R) of the domainR, with ¢ small and
V' a smooth vector field whose support is compact and does mos@utoR \ I'.

Then, it is well known (see, e.g[ 1B,]21] 25]) that, since Itaplacian-Dirichlet
eigenvalues oR are simple, the shape derivative)cﬁ alongV is defined as

- / <8§R > (V- v)do,

wherev denotes the outward normal  anddo the (d — 1)-dimensional surface
element. By hypothesig = (0,...,0,1) onT, so thatl” - v is equal tovg, thed'"
component of/. Notice, moreover, that

d ot
R _ R
(AR V) = 2N

o R
% = ¢ fk,

for some nonzero constantc R (defined up to sign) and sonig € N¢—!, where
[k, is defined as in the proof of Propositiph 6.

Letq = (q1,...,q) € RF\ {0}, j € Ji and introduceG; : Q@ — S gAS.
DifferentiatingG'; at) = R along a vector field” chosen as above yields,

(dG;,V) = /qucﬁf}( X1y .., Tg_1)vqdo.

Due to Propositiot]6,

k

2 2
qucjszn I
=1

is not everywhere zero ohi. Thus, it is possible to choosé = V; for which
The conclusion follows by applying Theorefh 4 wifh, = 1 for n # k and

Fi(yts - Yrer) = Dby @itz and by takingR; = (Id + tV;)(R) for ¢
small enough. O
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2. APPLICATIONS TO SHAPE OPTIMIZATION AND CONTROL THEORY

2.1. Stabilization of a damped membrane.We consider here a stabilization prob-
lem in R? and we are interested in proving the existence and uniqaesfesolu-
tions for a related shape optimization problem. More pedgidet us denote by
Q) ¢ R? a domain belonging t®,,, m € NU {cc}. Assume that the Laplacian-
Dirichlet eigenvalues df? are simple.

We consider the problem of stabilizing a membrane fixed atbihwendaryos?,
thanks to a damping acting only on a subdomaiDenote byy, the characteristic
function of w. The displacement of the membrane, in presence of a viscous
damping of the typ@ky.,, k > 0, satisfies

Py Av+ 2kxo (@)% =0 (t,2) € (0,+00) X ©

(5) v(t,z) =0 x eI t>0
v(0, ) = vo(x) x el
%(0733) = 'Ul(x) z €,

wherevy € H}(Q2) andv; € L*(Q). This system is known to be exponentially
stable ifw has positive measure and it is possible to define its expiaheecay rate
(which does not depend on the initial data). A natural goastonsists in looking
for the largest decay rate once the area @ fixed. Such optimization problem is
already quite difficult in the one-dimensional case (see [fL@]). For this reason
Hébrard and Henrot i [11] introduce a simplified versionitdby considering,
instead of the decay rate, the quantity

(6) Inw):= | Xo(e)(@n (@) de

whereN is a given positive integer angf? denotes, as in the previous sections, the
n'™™ normalized Laplacian-Dirichlet eigenfunction.

Then, we are driven to study the following shape optimizapooblem

min Jy (w)
(7) { w € Ly,
where £, denotes the set of measurable subsetQ of measurd. It is conve-
nient to identify subdomains @& with their characteristic functions, so théj is
identified with

{a € L) |a(x)=0o0r1a.e. and/Q a(x)dx = 6} .

The one-dimensional problem is completely solved i [18]the same paper it is
noticed that the proof of existence and uniqueness of thienapt for () can be
easily adapted to the two-dimensional case under the gehgpiothesis that the
square of the Laplacian-Dirichlet eigenfunctiafig, . . . , gzs% are linearly indepen-
dent (see Corollarf] 7). Indeed, first the authors prove tistence of an optimum
a® in a relaxed class. In order to prove that such a maximum isasacteristic
function, they study the optimality conditions satisfiedddy by considering per-
turbations ofa* with support inA; := {z € Q | e < a*(z) < 1 — ¢}, with a small
e > 0. They can prove in this way the existence/dfreal numbersyy,...,ay
such thai? + - - + a3, # 0 and

N
> ey (z)* = constant, for almost every € A..
k=1
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Then, because of the analyticity of the eigenfunctions drtthie linear indepen-
dence of their squaregl. must have measure zero.

Theorem 9. Generically with respect t& € D,,,, the optimization problent](7)
has a unique solutiowy,.

2.2. Controlled Schrodinger equation. We apply in this section Corollary 8 in
order to prove the generic approximate controllability dbitnear Schrodinger
equation of the type

i%(t, ) = (—A +ut)W (2))(t,x), (t,z) € (0,+00) x Q
(8) Y(t,z) =0 z €, t>0
¥(0,2) = vo(x) z €,

where (2 belongs toXx,, for somem € N U {0}, W € L>*(Q,R), the con-
trol « belongs toL>°([0, +o0), U) for some fixed measurable sub&ebf R with
nonempty interior, andyy € L?(Q2,C). System[[8) admits always a mild solution
Y € C([0, +00), L2(£, C)) in the sense of]5].

The control systen{]8) is said to be approximately contbtdldf for everyig, ¢ €
L?(Q,C) and every: > 0 there exist a contrat € L>(]0, +o00), U) and a positive
time 7" such that the solutiog of (8) satisfied|y)(T',-) — ¢1||12(q) < e.

It has been proved iff][7] thaf](8) is approximately contiabaif the Laplacian-
Dirichlet operator orf2 has non-resonant spectrum and

(9) /S)W(x)qs%(x)qsﬁﬂ(x) dx #0 foreveryk € N.

Corollary[$ ensures that the Laplacian-Dirichlet spectisigenerically non-resonant.
On the other hand, the unique continuation property imgheas for everyk € N,

the productyi ¢}, | is a nonzero function ofe. Therefore, for every2 with non-
resonant spectrur{W € L>(Q) | @) holds true is residual inL>°(2). More-
over, due to the continuity of the eigenfunctions statedrispBsition[1, for every

k € N the map

(W) /Q W ()62 (2) 62,1 (x) da

is continuous with respect to the product topologygf x L>°(R?). As a conse-
guence we obtain the following result.

Proposition 10. Generically with respect t¢, W) € ¥, x L>(R%), endowed
with the product topology, systefi} (8) is approximately idiable.
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