Folding optimal polygons from squares - Archive ouverte HAL Access content directly
Journal Articles Mathematics magazine Year : 2006

Folding optimal polygons from squares


What is the largest regular n-gon that fits in a unit square? Can it be folded from a square piece of paper using standard moves from origami? Answering the first question is relatively easy, using simple ideas from geometry. The second is more interesting; our answer illustrates the difference between origami and the standard compass-and-straightedge constructions of the Greeks, where, for instance, the 7-gon cannot be constructed. Not only can we fold a 7-gon, but we can fold the largest one possible from a given square piece of paper.
The rotating caliper to design optimal bounding boxes:
Fichier principal
Vignette du fichier
preprint.pdf (278.22 Ko) Télécharger le fichier
Vignette du fichier
animation.gif (811.72 Ko) Télécharger le fichier
AdditionalComments.pdf (91.74 Ko) Télécharger le fichier
Origin : Files produced by the author(s)
Format : Figure, Image
Origin : Files produced by the author(s)
Comment : Principe de la recherche de l'enveloppe optimale dans le cas du pentagone.
Format : Other
Origin : Files produced by the author(s)
Comment : Additional comments to the original paper

Dates and versions

hal-00321386 , version 1 (07-02-2017)


Attribution - NoDerivatives



David Dureisseix. Folding optimal polygons from squares. Mathematics magazine, 2006, 79 (4), pp.272-280. ⟨10.2307/27642951⟩. ⟨hal-00321386⟩
595 View
5042 Download



Gmail Facebook X LinkedIn More