From the Bloch model to the rate equations - Archive ouverte HAL
Article Dans Une Revue Discrete and Continuous Dynamical Systems - Series A Année : 2004

From the Bloch model to the rate equations

Résumé

We consider Bloch equations which govern the evolution of the density matrix of an atom (or: a quantum system) with a discrete set of energy levels. The system is forced by a time dependent electric potential which varies on a fast scale and we address the long time evolution of the system. We show that the diagonal part of the density matrix is asymptotically solution to a linear Boltzmann equation, in which transition rates are appropriate time averages of the potential. This study provides a mathematical justification of the approximation of Bloch equations by rate equations, as described in e.g. [Lou91]. The techniques used stem from manipulations on the density matrix and the averaging theory for ordinary differential equations. Diophantine estimates play a key role in the analysis.
Fichier principal
Vignette du fichier
bcd_accepted.pdf (320.69 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00319994 , version 1 (09-06-2021)

Identifiants

Citer

Brigitte Bidégaray-Fesquet, François Castella, Pierre Degond. From the Bloch model to the rate equations. Discrete and Continuous Dynamical Systems - Series A, 2004, 11 (1), pp.1-26. ⟨10.3934/dcds.2004.11.1⟩. ⟨hal-00319994⟩
339 Consultations
81 Téléchargements

Altmetric

Partager

More