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Abstract

In this article, we consider Bloch equations which govern the evolution of the density
matrix of a quantum system with a discrete set of energy levels. We assume that the
system is forced by a time dependent electric potential. We suppose that the potential
varies on a fast scale and we address the long time evolution of the system. We show that
the diagonal part of the density matrix is asymptotically solution to a linear Boltzmann
equation, in which transition rates are appropriate time averages of the potential. This
study provides a mathematical justification of the approximation of Bloch equations by
rate equations, as described in e.g. [Lou91].

The techniques used stem from manipulations on the density matrix and the averaging
theory for ordinary differential equations. Diophantine estimates play a key rôle in the
analysis.

Keywords: density matrix, Bloch equations, rate equations, linear Boltzmann equation,
averaging, Diophantine estimates.

1 Introduction

In this article, we address an asymptotic model as ε→ 0 for Bloch equations

ε2∂tρ(t, n,m) = − (iω(n,m) + γ(n,m)) ρ(t, n,m) (1)

+iε
∑
k

[
V
(
t

ε2
, n, k

)
ρ(t, k,m)− V

(
t

ε2
, k,m

)
ρ(t, n, k)

]
.
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More precisely, we wish to compute the asymptotic dynamics of the diagonal quantity

ρd(t, n) := ρ(t, n, n) .

Here, ρ(t, n,m) denotes the density matrix of an atomic system with discrete energy levels
indexed by the integer n, and ρd(t, n) is the occupation number of the n-th level. The quantity
ω(n,m) = ω(n) − ω(m) is the difference between the energies ω(n) and ω(m) of levels n and
m respectively. This equation describes the evolution of an atom, or a quantum system with a
discrete number of energy levels, forced by a high frequency electromagnetic wave. Its amplitude
φ(t/ε2) is assumed to be connected to the quantity V(t/ε2, n, k) via the relation

V
(
t

ε2
, n, k

)
= φ

(
t

ε2

)
V (n, k) ,

where V (n, k) is an entry in the interaction potential matrix between the wave and the atom.
In the usual dipolar approximation (see [Lou91]), V (n, k) is, up to a physical constant, an entry
in the product operator matrix by the position vector written in the basis of the eigenfunctions
of the atomic system. In the sequel we assume this quantity to be given.

The reaction of the atom is studied over long times of order 1/ε2, and the coupling between
the atom and the wave is weak, of order ε. Last we assume that the atom has a tendency to
relax to a given equilibrium state, via relaxation coefficients γ(n,m) ≥ 0. In this regime, the
predominant phenomenon as ε→ 0 is determined by the resonance of the electromagnetic source
frequencies with the eigen-frequencies ω(n,m) of the system. Thus the wave/atom interaction
tends to couple more stongly the wave frequencies that are resonant with the eigen-frequencies
of the system.
The aim of this article is to show that, in the limit ε→ 0, the populations of the atom energy
levels, given by the quantities ρ(t, n, n) =: ρd(t, n), tend to obey a linear Boltzmann equation
which reads

∂tρd(t, n) =
∑
k

σ(n, k)[ρd(t, k)− ρd(t, n)], (2)

with transition levels σ(n, k), that depend on the wave φ and on the atom parameters, and
that describe the above-mentioned resonance phenomenon. In all events, we of course have
σ(n, k) ≥ 0, as well as the symmetry σ(n, k) = σ(k, n) (micro-reversibility). Boltzmann-type
equations as Eq. (2) have first been suggested by Einstein, on heuristic grounds, for two-level
systems and are therefore sometimes called Einstein rate equations [Lou91].

In this paper, we show more precisely the following results.

• 1st case: the relaxation coefficients occurring in the Bloch equation (1) are uniform with
respect to the small parameter ε, in that

inf
n6=m

γ(n,m) =: γ > 0.

In this case we establish the predicted convergence of Eq. (1) to Eq. (2) for different types
of waves:
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(i) φ is a periodic or a quasi-periodic function (in both cases, the convergence rate from
Eq. (1) to Eq. (2) can be estimated).

(ii) φ is an almost periodic function, or a KBM-function (see [SV85]) (in this case, we
obtain no better convergence rate than o(1)).

(iii) φ has a slightly broadened frequency spectrum.

The accurate meaning of Hypotheses (ii) and (iii) is stated further.

• 2nd case: the relaxation coefficients occurring in the Bloch equation (1) vanish as ε
tends to zero, in that

inf
n6=m

γ(n,m) = εµ → 0,

for some power index µ > 0. In this case, and with some smallness restrictions on the
coefficient µ, we show in a way that the solution to the Bloch equation (1) tends to relax
immediately to the equilibrium state of the Boltzmann equation (2). More precisely, the
populations tend to satisfy the long time Boltzmann equation:

∂tρd(t, n) =
1

εµ

∑
k

σ(n, k)[ρd(t, k)− ρd(t, n)].

Our analysis makes use of two types of techniques.

• First, we use classical arguments for the Bloch equation in the weak coupling regime,
which makes possible to transform Eq. (1), as ε tends to 0, into a closed equation governing
only the populations. We refer to [Cas99], [Cas02], [Cas01], [CD99], or also [KL57],
[KL58], [Kre83], [Zwa66] for this point.

• Second, we use classical techniques of the averaging theory for ordinary differential equa-
tions, see [LM88], [SV85] about this topic. In particular, Diophantine estimates naturally
play a key rôle in the analysis.

In the past few years an extensive attention has been paid on the rigourous derivation
of Boltzmann type equations from dynamical models of (classical or quantum) particles or
models for the interaction of waves with random media. We can cite [Cas99], [Cas02], [Cas01],
[CD99] for convergence results in the case of an electron in a periodic box. We mention the
non-convergence result established in [CP02], [CP03] in a particular, periodic situation. We
also quote [EY00], [Spo77], [Spo80], [Spo91] in the case of an eleectron weakly coupled to
random obstacles, as well as the formal analysis performed in [KPR96], and the computation
of the relevant cross-sections performed in [Nie96]. All these results treat the case of a linear
Boltzmann equation. Let us also quote [BCEP03] for the nonlinear case. Besides, we refer the
reader to [Boh79], [Boy92], [CTDRG88], [Lou91], [NM92], [SSL77] for physics textbooks about
wave/matter interaction issues, which is the context of the mathematical problem we deal with.
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The article is organized as follows. In Section 2, we treat the case when the relaxation
coefficients γ(n,m) (for n 6= m) are assumed to be uniformly bounded below by a positive
constant. Section 3 handles the case when the relaxation coefficients tend to zero with ε
following a below-mentioned scaling hypothesis. The main results are Theorems 4, 5, 6, and 8.
In the sequel, C denotes any number which does not depend on ε.

2 The uniform relaxation case

2.1 The model

We want to pass to the limit ε→ 0 in the following equations

ε2∂tρ(t, n,m) = − (iω(n,m) + γ(n,m)) ρ(t, n,m) (3)

+iε
∑
k

[
V
(
t

ε2
, n, k

)
ρ(t, k,m)− V

(
t

ε2
, k,m

)
ρ(t, n, k)

]
.

Here, the discrete indices n, m, and k index the energy levels. They belong to the set
{1, 2, . . . , N} for some integer N ≥ 2 (the number of levels) which can possibly be N = +∞
(infinite number of levels).

Remark. Without altering the analysis below, we can add a relaxation term ε2Q(ρ)(t, n, n) to
Eq. (3) that reads

Q(ρ)(t, n, n) =
∑
p

(W (p, n)ρ(t, p, p)−W (n, p)ρ(t, n, n)),

where W (n, p) denotes the transition rate from level n to level p. Such a term would account
for any process in the atomic system contributing to redistribute the populations of the different
energy levels among themselves (like thermal processes, for example). In contrast, the γ(n, p)
relaxation coefficients model the processes that alter the coherences between the levels without
any effect on the populations. The assumption that the relaxation for coherences (cf. below)
are much faster than those for the populations underlies our analysis. This corresponds to the
physical regimes used in practice [Lou91].

Here and in all this Section 2, we make the following assumptions.

• At the initial time t = 0, we assume that ρ is a density matrix, with vanishing off-diagonal
terms (coherences), and non negative and summable diagonal terms (populations). More
precisely, we assume that

ρ(0, n,m) = 0, ∀n 6= m, ρ(0, n, n) ≥ 0, ∀n, and
∑
n

|ρ(0, n, n)| <∞. (4)
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• We assume that γ(n,m) > 0 for all n 6= m, and γ(n, n) = 0 for all n. More exactly, we
take

inf
(n,m),n6=m

γ(n,m) =: γ > 0 . (5)

We also assume that the symmetry property γ(n,m) = γ(m,n) holds for all n, m.

• We suppose that there exists a sequence ω(n) ∈ R such that

ω(n,m) = ω(n)− ω(m) .

• Last, we assume
V(t, n,m) = φ(t)V (n,m) ,

where φ is a real-valued function which is bounded on R. We moreover consider the case
when the doubly indexed sequence V (n,m) is Hermitian, that is V (n,m) = V (m,n)∗ (the
star denotes the complex conjugate). In the case when N = +∞, we assume as well that

sup
n∈N∗

∑
m∈N∗

|V (n,m)|+ sup
m∈N∗

∑
n∈N∗
|V (n,m)| <∞ , (6)

which we will denote by V (n,m) ∈ l1l∞∩ l∞l1. This is an abuse of notation. The physical
cases do correspond to such decay assumptions.

We note that some more specific assumptions will have to be done on φ later on in this
section, namely: Hypothesis 1 in Section 2.3 (r-chromatic wave), Hypothesis 2 in Section
2.4.1 (KBM-wave), and Hypothesis 3 in Section 2.4.2 (wave with spectrum broadening).

Before going any further, we introduce some notations which will be used in the sequel.

• We denote ρod(t, n,m) := ρ(t, n,m) 1[n 6= m]. The quantity ρod represents the off-
diagonal part of the density matrix ρ, also called coherences.

• In the same way, we denote ρd(t, n) := ρ(t, n, n). This is the diagonal part of ρ, also
called populations.

• We set Ω(n,m) := −iω(n,m) − γ(n,m) and with this notation it must be understood
that n 6= m (of course, for n = m, Ω(n,m) = 0 holds true).

• Given a sequence u(n) or a sequence v(n,m), simply or doubly indexed, the quantities
‖u‖l1 or ‖v‖l1 denote respectively

∑
n |u(n)| or

∑
n,m |v(n,m)|, where the indices n and m

belong to finite or infinite sets. In the same way, for a doubly indexed sequence v(n,m),
we set

‖v‖l1l∞∩l∞l1 := sup
n

∑
m

|v(n,m)|+ sup
m

∑
n

|v(n,m)|.
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With these notations, System (3) reads for the coherences

∂tρod(t, n,m) =
Ω(n,m)

ε2
ρod(t, n,m) +

i

ε
V
(
t

ε2
, n,m

)
[ρd(t,m)− ρd(t, n)]

+
i

ε

∑
k

[
V
(
t

ε2
, n, k

)
ρod(t, k,m)− V

(
t

ε2
, k,m

)
ρod(t, n, k)

]
, (7)

and for the populations

∂tρd(t, n) =
i

ε

∑
k

[
V
(
t

ε2
, n, k

)
ρod(t, k, n)− V

(
t

ε2
, k, n

)
ρod(t, n, k)

]
. (8)

Classical arguments (see e.g. [Cas99]) allow to state the existence and uniqueness of so-
lutions to System (7)-(8) for initial data in l1. We indeed have assumed that V belongs to
L∞(R+, l1l∞ ∩ l∞l1). Therefore the linear operator which associates ρ̃ to ρ ∈ L∞(R+, l1) de-
fined by

ρ̃(t, n,m) :=
∑
k

[
V
(
t

ε2
, n, k

)
ρ(t, k,m)− V

(
t

ε2
, k,m

)
ρ(t, n, k)

]
,

is continuous on L∞(R+, l1). This fact together with Eq. (3) implies in a straightforward way
that these solutions have the following regularity: ρ ∈ C0(R+, l1) and ∂tρ ∈ L∞loc(R+, l1).

Besides these solutions to Eq. (3) have additionnal properties and we state here those which
will prove to be useful in the sequel. First, for all t ∈ R, ρ(t) is Hermitian: ρod(t, n,m) =
ρod(t,m, n)∗. Next, for all t ∈ R, trace is conserved:

∑
n ρd(t, n) =

∑
n ρd(0, n) <∞. Last, for

all t ≥ 0, positiveness is conserved: ρd(t, n) ≥ 0 (see [Lin76], [BBR01], [Cas01]). In particular,
Eq. (8) which governs the diagonal part can be cast as

∂tρd(t, n) = −2

ε
Im

[∑
k

V
(
t

ε2
, n, k

)
ρod(t, k, n)

]
. (9)

2.2 Towards an equation for populations

In this section, we transform the coupled system (7)-(8) into one equation governing the pop-
ulations ρd(t, n) only. More precisely, we show the following lemma.

Lemma 1. Let us define the time dependent transition rate

Ψε

(
t

ε2
, k, n

)
= 2|V (n, k)|2 Re

∫ t/ε2

0

ds exp (Ω(k, n)s)φ

(
t

ε2

)
φ

(
t

ε2
− s
)
.

Let ρ
(1)
d be solution to

∂tρ
(1)
d (t, n) =

∑
k

Ψε

(
t

ε2
, k, n

)[
ρ
(1)
d (t, k)− ρ(1)d (t, n)

]
, (10)
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with initial data ρ
(1)
d (0, n) = ρd(0, n). Then, for all T > 0, there exists C > 0, independent on

ε, such that
‖ρd − ρ(1)d ‖L∞([0,T ],l1) ≤ Cε.

Remark. Eq. (10) is a linear Boltzmann type equation with a time dependent transition rate.
In a way, it yields the behavior of the populations at the dominant order in ε.

We could likewise state here a lemma of the same kind giving an approximation of ρd at
each order (in ε), thus providing a hierarchy of Boltzmann type equations for the successive
approximations to ρd.

Remark. The following proof shows the result for a small enough value of ε. However, in the
opposite case – which is of course not the one we are interested in – the lemma clearly holds
true since ρd and ρ

(1)
d are bounded in L∞ ([0, T ], l1).

Proof. Lemma 1 is proved in three steps. First, the values of the coherences ρod(t, n, k) are
computed at the first order in ε in terms of the populations ρd(t, n) only (see Lemma 2 below).
Next, this result is plugged into Eq. (9) governing populations: a closed equation for populations
is thus obtained. This equation is a linear Boltzmann equation with a time-delay term (see
Eq. (13)). Then, there remains to show that this delay is small, so that populations tend to
be solution to the delay-free equation (10). The present calculations are inspired by [Cas99],
[Cas02], [Cas01].

First step: computation of coherences. We first write an integral equation for the coherences
(off-diagonal terms). Using Eq. (7) and since the initial data is ρod(t = 0, n,m) ≡ 0, we of
course have

ρod(t, n,m) = iε

∫ t/ε2

0

ds exp (Ω(n,m)s)V
(
t

ε2
− s, n,m

)[
ρd(t− ε2s,m)− ρd(t− ε2s, n)

]
+iε

∫ t/ε2

0

ds exp (Ω(n,m)s)
∑
k

[
V
(
t

ε2
− s, n, k

)
ρod(t− ε2s, k,m)

−V
(
t

ε2
− s, k,m

)
ρod(t− ε2s, n, k)

]
. (11)

We can obviously solve iteratively the integral equation (11) in terms of the unknown ρod, and
obtain ρod as a complete expansion in powers of ε, in term of ρd. However, in the sequel we will
merely use first order expansions in ε. Therefore we right away only compute the first term in
the expansion of ρod. To achieve this, we state the following result.

Lemma 2. Let us set

ρ
(0)
od (t, n,m) :=

∫ t/ε2

0

ds exp (Ω(n,m)s)V
(
t

ε2
− s, n,m

)[
ρd(t− ε2s,m)− ρd(t− ε2s, n)

]
.
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Then, for all given time T ≥ 0, we have the estimate∥∥∥ρod − iερ(0)od

∥∥∥
L∞([0,T ],l1)

≤ Cε2,

for some constant C independent on ε.

Remark. In fact, the same error estimate is also valid for the extremal value T = +∞. We
will however not use this fact in the sequel.

Proof. Let T ≥ 0 be given. We denote by Aε the operator which associates to u ∈ L∞ ([0, T ], l1)
the quantity

(Aεu) (t, n,m) :=

∫ t/ε2

0

ds exp (Ω(n,m)s)
∑
k

[
V
(
t

ε2
− s, n, k

)
u(t− ε2s, k,m)

−V
(
t

ε2
− s, k,m

)
u(t− ε2s, n, k)

]
.

We have the straightforward estimate

‖Aεu‖L∞([0,T ],l1) ≤
2

γ
‖V‖L∞(R,l1l∞∩l∞l1)‖u‖L∞([0,T ],l1)

≤ C‖u‖L∞([0,T ],l1).

Besides, thanks to the integral equation (11) governing ρod, the following equality holds.

ρod(t, n,m) = iερ
(0)
od (t, n,m) + iε (Aερod) (t, n,m).

For this reason we easily estimate the difference

‖ρod − iερ(0)od ‖L∞(R,l1) ≤ Cε‖Aερod‖L∞(R,l1)

= Cε‖Aε(ρod − iερ(0)od + iερ
(0)
od )‖L∞(R,l1)

≤ Cε‖ρod − iερ(0)od ‖L∞(R,l1) + Cε2‖ρ(0)od ‖L∞(R,l1),

and thus we obtain for a small ε

‖ρod − iερ(0)od ‖L∞(R,l1) ≤ Cε2‖ρ(0)od ‖L∞(R,l1),

for some constant C > 0 independent on ε. There remains to use the obvious estimate

‖ρ(0)od ‖L∞(R,l1) ≤
2

γ
‖V‖L∞(R;l1l∞∩l∞l1)‖ρd‖L∞([0,T ],l1),

together with the classical identity

‖ρd‖L∞([0,T ],l1) = ‖ρd(t = 0)‖l1 , (12)

and Lemma 2 is proved. It must be stressed that the key estimate (12) is based on the Lindblad
property [Lin76] (which implies the conservation of positiveness for ρd), and on the conservation
of the l1-norm of ρd.
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Second step: towards a time delayed differential equation for the populations. Lemma 2 to-
gether with Eq. (9) governing ρd claim that

∂tρd(t, n) =
∑
k

∫ t/ε2

0

ds
[
ρd(t− ε2s, k)− ρd(t− ε2s, n)

]
(13)

×2Re

(
exp (Ω(k, n)s)V

(
t

ε2
, n, k

)
V
(
t

ε2
− s, k, n

))
+ εrε(t, n),

where, for all T > 0, there exists a constant C > 0 independent on ε such that the remainder
rε(t, n) satisfies

‖rε‖L∞([0,T ],l1) ≤ C. (14)

It is natural to introduce ρ
(0)
d , which is solution to

∂tρ
(0)
d (t, n) =

∑
k

∫ t/ε2

0

ds
[
ρ
(0)
d (t− ε2s, k)− ρ(0)d (t− ε2s, n)

]
(15)

×2Re

(
exp (Ω(k, n)s)V

(
t

ε2
, n, k

)
V
(
t

ε2
− s, k, n

))
,

with initial data ρ
(0)
d (0, n) = ρd(0, n). Clearly, Eqs (13) and (15) governing ρd and ρ

(0)
d , together

with the estimate (14) for rε, imply that, for all T > 0, there exists a constant C, independent
on ε, such that

‖ρd − ρ(0)d ‖L∞([0,T ],l1) ≤ Cε. (16)

Thus, there remains to estimate the difference between ρ
(1)
d , solution to the delay-free equation

(10), and ρ
(0)
d , solution to the integro-differential equation (15).

Third step: convergence to a delay-free equation. Synthetically we cast (10) as

∂tρ
(1)
d (t, n) =

(
Bερ

(1)
d

)
(t, n),

which defines a linear operator Bε – as operating on sequences in l1, for example. Let T ≥ 0
be given. Moreover, the delayed terms ρ

(0)
d (t− ε2s) in Eq. (15) read

ρ
(0)
d (t− ε2s, n) = ρ

(0)
d (t, n) +O

(
ε2s‖∂tρ(0)d ‖L∞([0,T ],l1)

)
.

Thus, Eq. (15) yields

∂tρ
(0)
d (t, n) =

(
Bερ

(0)
d

)
(t, n) + ε2rε(t, n),

where the remainder rε (we use the same notation rε as above in order not to overweight
notations) can be estimated by

‖rε‖L∞([0,T ],l1) ≤ Cγ−2‖∂tρ(0)d ‖L∞([0,T ],l1) using a Taylor expansion

≤ Cγ−3‖ρ(0)d ‖L∞([0,T ],l1) thanks to Eq. (15)
≤ C‖ρd‖L∞([0,T ],l1) thanks to Eq. (16)
≤ C thanks to Eq. (12),
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for some constant C independent on ε, only taking ε ≤ 1/2. Lemma 1 follows from these
estimates.

We end this section by stating a simplified version of Lemma 1. It consists in getting rid
of the t and ε dependence in the time integral limit. This transformation proves very useful in
the sequel.

Lemma 3. Let us define the time dependent transition rate

Ψ

(
t

ε2
, k, n

)
= 2|V (n, k)|2 Re

∫ +∞

0

ds exp (Ω(k, n)s)φ

(
t

ε2

)
φ

(
t

ε2
− s
)
. (17)

Let ρ
(2)
d be solution to

∂tρ
(2)
d (t, n) =

∑
k

Ψ

(
t

ε2
, k, n

)[
ρ
(2)
d (t, k)− ρ(2)d (t, n)

]
, (18)

with initial data ρ
(2)
d (0, n) = ρd(0, n). Then, for all T > 0, there exists C > 0, independent on

ε, such that
‖ρd − ρ(2)d ‖L∞([0,T ],l1) ≤ Cε.

Proof. This result is straightforward since we have

‖ρ(1)d − ρ
(2)
d ‖L∞([0,T ],l1) ≤ Cε2.

(To obtain this result, compare the solutions to ẏ = (1− e−t/ε2)y and ż = z, with same initial
data: the size of the difference z − y is ε2, locally in time).

2.3 Limiting process and derivation of the Boltzmann equation: the
case of a “r-chromatic” wave

Considering a classical expansion in power of ε reading ρd = ρ0d + ερ1d + · · · , we have up to now
written an approximate equation for ρ0d, which is the lower order term in ε of ρd. This led us
to Eq. (10). The above analysis may be easily extended to an expansion with all the orders in
ε.

The limiting process in Eq. (10) does no longer come from a simple series expansion, but
rather from averaging techniques, and, in particular, strongly depends on the precise time
dependence of V .

To that aim, we specify in this section the time dependence of V . We study the “r-
chromatic” case, that is we assume the following.

10



Hypothesis 1.

V(t, n,m) = φ(t) V (n,m), with φ(t) = Φ(ω1t, . . . , ωrt),

and Φ is a real-valued function, 1-periodic in its arguments, analytic on a strip |Imz1| ≤ σ, . . .,
|Imzr| ≤ σ. Moreover, there is a finite number r of frequencies ωi (i = 1, · · · , r) which satisfy
the Diophantine condition

∃C > 0, ∃κ > 0, ∀α = (α1, . . . , αr) ∈ Zr, |α · ω| ≥ C

|α|κ
,

whenever α · ω 6= 0.

We denoted α · ω = α1ω1 + · · ·αrωr. These assumptions fundamentally mean that we assume
φ to be quasi-periodic and analytic.

Remark. Given once and for all a fixed δ > 0, we can classically claim (see [Arn89]) that,
for almost all value of the frequency vector ω = (ω1, . . . , ωr), there exists a constant C(ω) > 0,
depending on ω (and on δ), such that

∀α ∈ Zr \ {0}, |α · ω| ≥ C(ω)

|α|r−1+δ
.

Therefore, at least if κ = r − 1 + δ with δ > 0, the above Diophantine condition holds true for
almost all frequency vector ω. Hence the Diophantine condition is not much restrictive.

Also, on this basis, one could release the analytic assumption for Φ as follows: because Φ
is an analytic function, the Fourier coefficients Φα (α ∈ Zr) of Φ are exponentially decreasing
(|Φα| ≤ C1 exp(−C2|α|) for some coefficients C1, C2 > 0 independent on α). In the sequel,
it would be sufficient to assume that the Fourier coefficients of Φ are polynomially decreasing,
that is ensure the estimate

|Φα| ≤
C1

|α|N(r,κ)
,

for some coefficient C1, independent on α and some exponent N(r, κ) > 0 which only depends
on κ and the dimension r of the frequency vector ω. We do not continue this technical point.

Remark. The results we present here extend in other situations, i.e. for other types of functions
φ, but with less accurate error estimates. We detail this point further.

First of all, let us recall a few results which are valid for a function φ as above. First,
according to Hypothesis 1, the function φ has a convergent series expansion

φ(t) =
∑
α∈Zr

φα exp(2iπα · ωt). (19)

Moreover coefficients φα verify, for analyticity reasons,

|φα| ≤ C1 exp(−C2|α|), (20)

11



for some constants C1 > 0 and C2 > 0, independent on the multi-index α. Thus we define the
time average of φ, denoted by 〈φ〉, as

〈φ〉 := lim
T→∞

1

T

∫ T

0

dt φ(t). (= φ(0,...,0))

Now we state the main theorem of this section.

Theorem 4. (i) Under the r-chromatic hypothesis 1, we introduce the asymptotic transition
rate

〈Ψ〉(k, n) := lim
T→∞

1

T

∫ T

0

dt Ψ(t, k, n),

where Ψ is defined by (17). Let also ρ
(3)
d be solution to

∂tρ
(3)
d (t, n) =

∑
k

〈Ψ〉(k, n)
[
ρ
(3)
d (t, k)− ρ(3)d (t, n)

]
, (21)

with initial data ρ
(3)
d (0, n) = ρd(0, n). Then, for all T > 0, there exists a constant C > 0

independent on ε, such that
‖ρd − ρ(3)d ‖L∞([0,T ],l1) ≤ Cε.

(ii) In the specific monochromatic case when φ(t) = cos(2πωt) for some frequency ω, we
may compute explicitely

〈Ψ〉(k, n) =
|V (n, k)|2γ(k, n)

2

(
1

γ(k, n)2 + (2πω − ω(k, n))2
+

1

γ(k, n)2 + (2πω + ω(k, n))2

)
.

(22)
(iii) In the r-chromatic case, formula (22) may be extended to

〈Ψ〉(k, n) = 2
∑
β∈Zr

γ(k, n) |V (n, k)|2 |φβ|2

γ(k, n)2 + [2πβ · ω + ω(k, n)]2
. (23)

Remark. According to Lemma 3, Eq. (18) governing ρ
(2)
d is cast as

∂tρ
(2)
d (t, n) =

∑
k

Ψ

(
t

ε2
, k, n

)[
ρ
(2)
d (t, k)− ρ(2)d (t, n)

]
.

On the other hand, Theorem 4 states that ρ
(3)
d is solution to

∂tρ
(3)
d (t, n) =

∑
k

〈Ψ〉(k, n)
[
ρ
(3)
d (t, k)− ρ(3)d (t, n)

]
.

This type of convergence result is classical when averaging ordinary differential equations and
we transpose here techniques described in [SV85].

Proof. The proof of Theorem 4 is splitted in several steps.

12



First step: preliminary remarks and problem reduction. The proof of (22) and (23) follows
from a direct calculation (see (28) below).

Therefore we only prove item (i). We choose some time T ≥ 0. In order to show that ρ
(2)
d

converges to ρ
(3)
d , we now introduce, as in [SV85], an auxiliary variable ρ

(4)
d , solution to

∂tρ
(4)
d (t, n) =

∑
k

[
ρ
(4)
d (t, k)− ρ(4)d (t, n)

]
× ε

∫ 1/ε

0

ds Ψ

(
t

ε2
+ s, k, n

)
, (24)

with initial data ρ
(4)
d (0, n) = ρd(0, n). In what follows, we successively prove

‖ρ(2)d − ρ
(4)
d ‖L∞([0,T ],l1) ≤ Cε, (25)

and
‖ρ(4)d − ρ

(3)
d ‖L∞([0,T ],l1) ≤ Cε. (26)

These two estimates of course end the proof of Theorem 4.

Second step: proof of (26). The proof of (26) is based on the estimate∥∥∥∥∥〈Ψ〉 − ε
∫ 1/ε

0

ds Ψ

(
t

ε2
+ s

)∥∥∥∥∥
L∞([0,T ],l1l∞∩l∞l1)

≤ Cε, (27)

and Gronwall lemma.
The function Ψ(t, k, n) satisfies the analytic and quasi-periodic hypothesis 1, and therefore

admits a convergent series expansion like (19)-(20). More precisely, from (19) we deduce easily
the formula

Ψ(t, k, n) = 2|V (n, k)|2 Re
∑
α,β∈Zr

φαφβ exp (2iπ[α + β] · ωt)
−Ω(k, n) + 2iπβ · ω

. (28)

This developed form for Ψ allows to estimate the left hand-side in (27) by

2
∑
β∈Zr

|φβ|

∥∥∥∥∥ |V (n, k)|2

−Ω(k, n) + 2iπβ · ω

∥∥∥∥∥
l1l∞∩l∞l1

× (29)

×

∣∣∣∣∣φ−β −∑
α∈Zr

ε

∫ 1/ε

0

ds φα exp

(
2iπ[α + β] · ω [

t

ε2
− s]

) ∣∣∣∣∣.
Thanks to the exponentially decreasing estimate given by (20), we do have the right to integrate

13



each term separately. According to the Diophantine condition on ω, we then notice that∣∣∣∣∣φ−β −∑
α∈Zr

ε

∫ 1/ε

0

ds φα exp

(
2iπ[α + β] · ω(

t

ε2
− s)

) ∣∣∣∣∣
=

∣∣∣∣∣ ∑
α+β 6=0

ε

∫ 1/ε

0

ds φα exp

(
2iπ[α + β] · ω(

t

ε2
− s)

) ∣∣∣∣∣
≤ Cε

∑
α 6=−β

|φα|
|(α + β) · ω|

≤ Cε
∑
α 6=−β

|φα| |α + β|κ.

On the other hand, we use the estimate

| − Ω(k, n) + 2iπβ · ω| ≥ γ.

This allows to estimate (29) by

Cε
∑
α,β∈Zr

|φβ| |φα| |α + β|κ ≤ Cε,

and (27) is established.
Let us by the way notice that a term by term integration on the expansion (28) for Ψ leads
immediately to formula (23).

Third step: proof of (25). The proof of (25) is a little more delicate. The difference ∆ =

ρ
(2)
d − ρ

(4)
d is solution to

∂t∆(t, n) =
∑
k

Ψ(
t

ε2
, k, n) [∆(t, k)−∆(t, n)]

+
∑
k

(
Ψ(

t

ε2
, k, n)− ε

∫ 1/ε

0

ds Ψ

(
t

ε2
+ s, k, n

))[
ρ
(4)
d (t, k)− ρ(4)d (t, n)

]
,

with vanishing initial data. Therefore we can write

∆(t, n) =

∫ t

0

du
∑
k

Ψ(
u

ε2
, k, n) [∆(u, k)−∆(u, n)] (30)

+

∫ t

0

du
∑
k

(
Ψ(

u

ε2
, k, n)− ε

∫ 1/ε

0

ds Ψ
( u
ε2

+ s, k, n
))[

ρ
(4)
d (u, k)− ρ(4)d (u, n)

]
.

The first term of the right hand-side in (30) is estimated in the l1 norm by C
∫ t
0
du ‖∆(u)‖l1 .

Using Gronwall lemma, the proof of (25) therefore reduces to prove the following estimate for
|t| ≤ T :∥∥∥∫ t

0

du
∑
k

(
Ψ(

u

ε2
, k, n)− ε

∫ 1/ε

0

ds Ψ
( u
ε2

+ s, k, n
))[

ρ
(4)
d (u, k)− ρ(4)d (u, n)

] ∥∥∥
l1
≤ Cε.

(31)
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We therefore conclude by proving (31). To this aim, we write for the contribution due to

ρ
(4)
d (u, k) (we handle the contribution due to ρ

(4)
d (u, n) in a similar way),∫ t

0

du
∑
k

ε

∫ 1/ε

0

ds Ψ
( u
ε2

+ s, k, n
)
ρ
(4)
d (u, k)

=
∑
k

∫ 1

0

ds

∫ t

0

du Ψ

(
u+ εs

ε2
, k, n

)
ρ
(4)
d (u, k)

=
∑
k

∫ 1

0

ds

∫ t

0

du Ψ

(
u+ εs

ε2
, k, n

)
ρ
(4)
d (u+ εs, k) +OL∞([0,T ],l1)(ε), (32)

where the OL∞([0,T ],l1)(ε) term means that the difference is estimated by Cε in the L∞([0, T ], l1)
norm, for some constant C independent on ε. Of course, this last estimate is obtained thanks
to the definition of Ψ, as well as Eq. (24) governing ρ

(4)
d , which implies that

‖∂tρ(4)d (t, n)‖L∞([0,T ],l1) ≤ C.

We now estimate the first term in (32) which can be rewritten as∑
k

∫ 1

0

ds

∫ t+εs

εs

du Ψ
( u
ε2
, k, n

)
ρ
(4)
d (u, k).

Noticing that the quantity

∂s

(∫ t+εs

εs

du Ψ
( u
ε2
, k, n

)
ρ
(4)
d (u, k)

)
is of order ε in the L∞([0, T ], l1) space, we estimate this term by∑

k

∫ t

0

du Ψ
( u
ε2
, k, n

)
ρ
(4)
d (u, k) +OL∞([0,T ],l1)(ε).

All these computations lead to (31), which ends the proof of Theorem 4.

Remark. A remark has to be made on the above proof of Theorem 4. We followed [SV85]
since it may be extended to other types of function φ than the quasi-periodic functions. We
refer to Section 2.4.1 for this point. Nevertheless, in the quasi-periodic case, a simpler and
more straightforward proof is possible and we refer to Section 3.3 for an illustration of this fact.

2.4 Generalizing the former analysis to more general wave profiles

2.4.1 Case of a “KBM” wave

Following [LM88], [SV85], we may replace the r-chromatic hypothesis 1 by the following “KBM”
(Krylov-Bogolioubov-Mitropolski) type hypothesis.
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Hypothesis 2.
V(t, n,m) = φ(t)V (n,m),

where φ is a bounded C1 function, such that, for all t ≥ 0,

〈Ψ〉(n,m) := lim
T→∞

1

T

∫ T

0

du Ψ(t+ u, n,m) exists in l1l∞ ∩ l∞l1,

where Ψ is defined by (17) as above, that is

Ψ(t, n,m) = 2|V (n,m)|2 Re

∫ +∞

0

ds exp(Ω(n,m)s)φ(t)φ(t− s).

(This limit, whenever it exists, does not depend on t.)

Under Hypothesis 2, we introduce the convergence rate

δ(ε) := sup
0≤T≤1/ε2

∥∥∥∥∥ε2
∫ T

0

du [Ψ(u)− 〈Ψ〉]

∥∥∥∥∥
l1l∞∩l∞l1

.

Hypothesis 2 implies that δ(ε) tends to 0 as ε tends to 0.
We now state the main theorem of this section.

Theorem 5. (i) Under the “KBM” hypothesis 2, we introduce ρ
(5)
d , which is solution to

∂tρ
(5)
d (t, n) =

∑
k

〈Ψ〉(k, n)
[
ρ
(5)
d (t, k)− ρ(5)d (t, n)

]
,

with initial data ρ
(5)
d (0, n) = ρd(0, n). Then, for all T > 0, there exists a constant C > 0

independent on ε, such that

‖ρd − ρ(5)d ‖L∞([0,T ],l1) ≤ C
√
δ(ε) −→

ε→0
0.

(ii) The result of item (i) applies in particular if φ is an almost periodic function, that is if
there exists a sequence of trigonometric polynomials (Pl(t))l∈N such that

sup
t∈R
|Pl(t)− φ(t)| −→

l→∞
0.

(iii) The result of item (i) applies also in the case when φ has a continuous spectrum, that
is when

φ(t) =

∫
R
dτ A(τ) exp(iτ t),

for a frequency profile A(τ) which we will suppose – in order to simplify – to be smooth enough:
A ∈ S(R) (it goes without saying that this assumption may be relaxed). In this case, we simply
have

〈Ψ〉 ≡ 0.
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Remark. Theorems 4 and 5 show that, in the limit ε→ 0, populations ρd(t, n) tend to satisfy
a Boltzmann equation, with a transition rate that takes into account the resonance between
the eigen-frequencies of the atom and the frequencies of φ. In the monochromatic or the r-
chromatic case, it is obvious that resonances between the frequency vector ω of the wave φ and
the values ω(n, k) are more strongly coupled via the transition rate (22) or (23). The above
item (ii) shows, in a less quantitative way, that this phenomenon always occurs if the wave has
a discrete stectrum which does not necessarily corresponds to a finite number r of independent
frequencies (the spectrum of an almost periodic function is in general more “dense” that that
of a quasi-periodic function). On the other hand, in the extreme case when the wave φ has a
continuous spectrum, these resonances are rubbed out in a way, and the asymptotic equation
governing populations is trivial.

Proof. Item (iii) is a straightforward consequence of item (i). To show item (ii), it is enough
to show that Hypothesis 2 holds for an almost periodic function φ. To see this, we choose a
sequence Pl of trigonometric polynomials which tends to φ. We define

Ψl(t, k, n) = 2|V (k, n)|2 Re

∫ +∞

0

ds exp(Ω(k, n)s)Pl(t)Pl(t− s),

and the average

〈Ψl〉(k, n) = lim
T→∞

1

T

∫ T

0

ds Ψl(s, k, n).

(The limit is taken in l1l∞∩ l∞l1, and exists for all l). Using the fact that Re Ω(k, n) ≤ −γ < 0
for all k, n, it is easy to see that the sequences Ψl and 〈Ψl〉 are Cauchy sequences in the
appropriate spaces.

To show item (i), we use the same outline as for the proof of Theorem 4.

First step. We take a long time scale T (ε) to be determined (in fine we will take T (ε) =√
δ(ε)/ε2). We introduce ρ

(6)
d , which is solution to

∂tρ
(6)
d (t, n) =

∑
k

(
1

T (ε)

∫ T (ε)

0

ds Ψ

(
t

ε2
+ s, k, n

))[
ρ
(6)
d (t, k)− ρ(6)d (t, n)

]
,

with initial data ρ
(6)
d (0, n) = ρd(0, n). Following the proof of Theorem 4, it is easy to find the

error estimate:
‖ρ(2)d − ρ

(6)
d ‖L∞([0,T ],l1) ≤ Cε2T (ε). (33)

Second step. Coming back to the definition of δ(ε), and using the equations governing ρ
(6)
d

and ρ
(5)
d respectively, we easily establish the estimate

‖ρ(5)d − ρ
(6)
d ‖L∞([0,T ],l1) ≤ C

δ(ε)

ε2T (ε)
. (34)

The optimal choice T (ε) =
√
δ(ε)/ε2 in (33) and (34) yields Theorem 5.
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2.4.2 Case of a r-chromatic wave with spectrum broadening

Theorems 4 and 5 claim that populations tend to be solution to a Boltzmann equation in the case
of a wave φ with a discrete spectrum (case of a r-chromatic or an almost periodic function), and
that this equation turns out to be trivial is the case when the wave φ has a continuous spectrum.
Consequently it is natural to consider, as it is the case in this section, the intermediate case
when the wave φ has a slightly broadened spectrum around a given frequency vector ω.

To this aim, we assume in this section that

Hypothesis 3.

φ(t) =
1

εqr

∑
α∈Zr

∫
Rr
dη A

(
α,
η − ω
εq

)
exp(2iπα · η t)

=
∑
α∈Zr

∫
Rr
dη A(α, η) exp(2iπα · [ω + εqη] t), (35)

for some exponent q > 0. We also assume that the amplitude A is sufficiently decreasing and
smooth with respect to α and η and we assume also that

A(α, η) ∈ l1(Zr, L1(Rr)). (36)

Note that we do not make explicit the dependence of φ with respect to ε in (35).

The wave φ being given by (35), we now establish the analogue of Theorem 4 shown in the
r-chromatic case.

Theorem 6. Let φ such that (35) and (36) hold. We introduce ρ
(7)
d (t, n), which is solution to

∂tρ
(7)
d (t, n) =

∑
k

〈Ψ〉(k, n)
[
ρ
(7)
d (t, k)− ρ(7)d (t, n)

]
,

with initial data ρ
(7)
d (0, n) = ρd(0, n), where 〈Ψ〉(k, n) is given by the formula

〈Ψ〉(k, n) := 2|V (n, k)|2Re
∑
β∈Zr

∣∣∣ ∫Rr dη A(β, η)
∣∣∣2

γ(k, n) + i [ω(k, n) + 2πβ · ω]
. (37)

Then, for all T > 0, we have the error estimate

‖ρd − ρ(7)d ‖L∞([0,T ],l1) −→
ε→0

0.

Remark. Theorem 6 shows, in particular, that spectrum broadening does not play an essential
rôle and everything works as if the wave were straight off really r-chromatic (limiting case
q = +∞ in (35)).
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Proof. To show Theorem 6, we proceed as in the proof of Theorems 4 and 5.

We therefore have to calculate the function Ψ as defined by (17) (once more, we do not
make explicit the ε-dependence of Ψ). We easily have

Ψ(t, k, n) = 2|V (n, k)|2Re
∑
α,β∈Zr

∫
R2r

dη dη′ A(α, η)A(β, η′)×

×exp (2iπ [[α + β] · ω + εq[α · η + β · η′]] t)
γ(k, n) + i [ω(k, n) + 2πβ · [ω + εqη′]]

. (38)

Then we define the asymptotic quantity

〈Ψ〉(k, n) := 2|V (n, k)|2Re
∑
β∈Zr

∫
R2r

dη dη′
A(−β, η)A(β, η′)

γ(k, n) + i [ω(k, n) + 2πβ · ω]
. (39)

Of course, since φ is a real function, definition (39) is equivalent to (37).

Last, as in the proof of Theorem 5, we take a time scale T (ε) = ε−δ for some (small)
exponent δ > 0. We show the two estimates below (which are analogous to (27) and (31))∥∥∥∥∥〈Ψ〉 − εδ

∫ 1/εδ

0

ds Ψ

(
t

ε2
+ s

)∥∥∥∥∥
L∞([0,T ],l1l∞∩l∞l1)

−→
ε→0

0, (40)

∥∥∥∥∥
∫ t

0

du

(
Ψ
( u
ε2

)
− εδ

∫ 1/εδ

0

ds Ψ
( u
ε2

+ s
))∥∥∥∥∥

L∞([0,T ],l1l∞∩l∞l1)

≤ Cε2−δ. (41)

The proof of (41) is easy and follows the same outline as the above proof of (31). We
therefore merely show (40).

To this aim, we begin with the definitions (38) and (39) of Ψ and its asymptotic average
〈Ψ〉. Then we estimate easily the left hand-side of (40) by

C
∑
α+β 6=0

∫
R2r

dη dη′ |A(α, η)| |A(β, η′)|

∣∣∣∣∣exp
(
2iπ [[α + β] · ω + εq[α · η + β · η′]] ε−δ

)
− 1

2iπ [[α + β] · ω + εq[α · η + β · η′]] ε−δ

∣∣∣∣∣
+C

∑
β

∫
R2r

dη dη′ |A(−β, η)| |A(β, η′)|

∣∣∣∣∣1− exp
(
2iπεq−δβ · [η′ − η]

)
− 1

2iπεq−δβ · [η′ − η]

∣∣∣∣∣.
To show that each term tends to 0, we apply the dominated convergence theorem using that
function (eix − 1)/x is globally bounded on R. For the second term, we notice that for all β
and almost all η, η′, we have

exp
(
2iπεq−δβ · [η′ − η]

)
− 1

2iπεq−δβ · [η′ − η]
−→
ε→0

1,
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provided 0 < δ < q, which we assume to hold true. For the first term, we write that for all α
and β such that α + β 6= 0, and for almost all η, η′, we have∣∣∣∣∣exp

(
2iπ [[α + β] · ω + εq[α · η + β · η′]] ε−δ

)
− 1

2iπ [[α + β] · ω + εq[α · η + β · η′]] ε−δ

∣∣∣∣∣
≤ Cεδ∣∣∣[α + β] · ω + εq[α · η + β · η′]

∣∣∣ ∼ε→0

Cεδ∣∣∣[α + β] · ω
∣∣∣ ≤ C εδ,

where we of course use the Diophantine property which is satisfied by ω. This ends the proof
of (40).

To conclude, estimates (40) and (41), together with the techniques developed in the proofs
of Theorems 4 and 5, yield Theorem 6.

3 Case when relaxations tend to 0 with ε

3.1 The model

The whole analysis performed in Section 2 relies strongly on the existence of a uniform relax-
ation, since we assumed that

γ := inf
(n,m),n 6=m

γ(n,m) > 0.

In this section, we address the case when γ depends on ε, and tends to 0 with ε. We consider
more specifically the case when γ ∼ εµ for some exponent µ > 0. Precisely, we reproduce the
former analysis in the case when we perform the substitution

γ(n,m)→ εµγ(n,m)

in the original Bloch equations (3). The value of the exponent µ is specified below.
Summarizing, we now perform the asymptotic analysis as ε→ 0 in

ε2∂tρ(t, n,m) = − (iω(n,m) + εµγ(n,m)) ρ(t, n,m) (42)

+iε
∑
k

[
V
(
t

ε2
, n, k

)
ρ(t, k,m)− V

(
t

ε2
, k,m

)
ρ(t, n, k)

]
.

The initial data, as well as coefficients γ(n,m), ω(n,m) and wave profile V(t, n,m) are chosen
as in the case of uniform relaxations (see Section 2, and the assumptions listed in Section 2.1).

Unfortunately, the analysis presented in this Section 3 needs the following three restrictions.
First, we need the following strong decay assumption on the coefficients V (n,m). Indeed,

we assume in the whole Section 3 that∑
n,m

(1 + |n|)2+2δ (1 + |m|)2+2δ|V (n,m)|2 <∞ , (43)
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where δ > 0 is as in Hypothesis 4 below, and may be arbitrarily small. This restriction stems
from “small denominator” considerations (Diophantine estimates). The present decay should
be compared with the milder assumption (6) made in the previous section. Though the mild
decay (6) is physically relevant in most situations, the stronger assumption (43) means that we
consider a situation where the relevant energy levels of the atom are “far from the continuous
spectrum”.

Second, we restrict in the sequel of this section to the case when

µ < 1/2. (44)

We do not know whether this exponent is optimal or not. A comment is necessary. In the
case when γ > 0 (i.e. µ = 0), the initial Bloch equation (3) is time-irreversible and the
asymptotic equation (21) is also time-irreversible. On the other hand, in the opposite case
when every coefficient γ(n,m) is identically zero, the initial Bloch equation is time-reversible
and the nature of the problem has changed. It is therefore no wonder that the following analysis
displays a threshold value for the exponent µ.

Last, our analysis is restricted to the case of an r-chromatic wave and we need the

Hypothesis 4. The function φ is assumed r-chromatic, in the sense that

V(t, n,m) = φ(t) V (n,m), with φ(t) = Φ(ω1t, . . . , ωrt),

and Φ is a real-valued function, 1-periodic in its arguments, analytic on a strip |Imz1| ≤ σ, . . .,
|Imzr| ≤ σ. Moreover, there is a finite number r of frequencies ωi (i = 1, . . . , r) which satisfy
the following Diophantine condition: There exists a constant C > 0 and a number δ > 0 such
that

∀α = (α1, . . . , αr) ∈ Zr, ∀(k, n) ∈ N2 ,

|α · ω + ω(k, n)| ≥ C

(1 + |α|)r−1+δ (1 + |n|)1+δ (1 + |k|)1+δ
,

whenever α · ω + ω(k, n) 6= 0, and

∀α = (α1, . . . , αr) ∈ Zr, |α · ω| ≥ C

(1 + |α|)r−1+δ
,

whenever α · ω 6= 0.

The extension to other types of waves is discussed further.

Remark. Given once and for all a fixed δ > 0, it is easily proved (see [Arn89]) that, for almost
all value of the frequency vector ω = (ω1, . . . , ωr), there exists a constant C(ω) > 0, depending
on ω (and on δ), such that

∀α ∈ Zr ,∀(k, n) ∈ N2 , |α · ω + ω(k, n)| ≥ C(ω)

(1 + |α|)r−1+δ (1 + |n|)1+δ(1 + |k|)1+δ
,
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whenever α · ω + ω(k, n) 6= 0, and the analogous estimate holds for α · ω. This is an easy
consequence of the fact that∑

α

∑
k,n

(1 + |α|)−(r−1+δ) (1 + |n|)−(1+δ)(1 + |k|)−(1+δ) <∞ .

Therefore, the above Diophantine condition holds true for almost all frequency vector ω, and
δ may be taken arbitrarily small. Hence the Diophantine condition is not much restrictive.
Also, it is needless to say that one could release the analytic assumption for Φ in the analysis
performed below, and we do not continue this technical point.

Let us now return to the asymptotic analysis of (42). It follows the main steps of the case
γ > 0 (i.e. µ = 0).

3.2 Towards an equation for populations

In this section we establish the following lemma.

Lemma 7. Let us define the time dependent transition rate:

Ψε

(
t

ε2
, k, n

)
:= 2|V (n, k)|2 Re

∫ t/ε2

0

ds exp (Ω(k, n)s)φ

(
t

ε2

)
φ

(
t

ε2
− s
)
,

where Ω(k, n) = −(iω(k, n) + εµγ(k, n)). Let also ρ
(8)
d be solution to

∂tρ
(8)
d (t, n) =

∑
k

Ψε

(
t

ε2
, k, n

)[
ρ
(8)
d (t, k)− ρ(8)d (t, n)

]
, (45)

with initial data ρ
(8)
d (0, n) = ρd(0, n). We assume that µ < 1/2. Then for all T > 0, there

exists C such that the following estimate holds

‖ρd − ρ(8)d ‖L∞([0,T ];l1) ≤ Cε1−2µ. (46)

Remark. Lemma 7 extends immediately to the more general case when φ is a bounded function
on R.

Proof. We follow the main steps of the proof of Lemma 1.
To begin with, we compute the coherences in terms of the populations, at the lowest order

in ε. Therefore we write, as in Eq. (11),

ρod(t, n,m) = iε

∫ t/ε2

0

ds exp (Ω(n,m)s)V
(
t

ε2
− s, n,m

)[
ρd(t− ε2s,m)− ρd(t− ε2s, n)

]
+iε

∫ t/ε2

0

ds exp (Ω(n,m)s)
∑
k

[
V
(
t

ε2
− s, n, k

)
ρod(t− ε2s, k,m)

−V
(
t

ε2
− s, k,m

)
ρod(t− ε2s, n, k)

]
=: iε

(
Aερd

)
(t, n,m) + iε

(
Ãερod

)
(t, n,m),
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which defines operators Aε and Ãε. Thus, we obtain for a given value of T > 0:

‖ρod − iε(Aερd)‖L∞([0,T ],l1) = ε‖Ãερod‖L∞([0,T ],l1) (47)

≤ ε
∥∥∥Ãε[ρod − iε(Aερd)

]∥∥∥
L∞([0,T ],l1)

+ ε2‖ÃεAερd‖L∞([0,T ],l1).

Besides, using the definition Ω(n,m) = −iω(n,m) − εµγ(n,m) in which γ(n,m) ≥ γ > 0, we
of course have the estimates

‖ÃεAερd‖L∞([0,T ],l1) ≤
C

εµ
‖Aερd‖L∞([0,T ],l1) ≤

C

ε2µ
‖ρd‖L∞([0,T ],l1).

Thus, we obtain in (47), for ε small enough,

‖ρod − iε(Aερd)‖L∞([0,T ],l1) ≤ Cε2‖(ÃεAερd)‖L∞([0,T ],l1)

≤ Cε2−2µ‖ρd‖L∞([0,T ],l1) ≤ Cε2−2µ.

Thereby, Eq. (8) for the populations reads

∂tρd(t, n) =
i

ε

∑
k

[
V
(
t

ε2
, n, k

)
ρod(t, k, n)− V

(
t

ε2
, k, n

)
ρod(t, n, k)

]
= −

∑
k

[
V
(
t

ε2
, n, k

)
(Aερd)(t, k, n)− V

(
t

ε2
, k, n

)
(Aερd)(t, n, k)

]
(48)

+OL∞([0,T ];l1)(ε
1−2µ).

Here, the symbol OL∞([0,T ];l1)(ε
1−2µ) means that the corresponding remaining term is estimated

by Cε1−2µ in the L∞([0, T ], l1) norm, for a constant C > 0 independent on ε. Making Eq. (48)
explicit, we obtain the equation:

∂tρd(t, n) =
∑
k

∫ t/ε2

0

ds
[
ρd(t− ε2s, k)− ρd(t− ε2s, n)

]
×

×2Re

(
exp (Ω(k, n)s)V

(
t

ε2
, n, k

)
V
(
t

ε2
− s, k, n

))
(49)

+OL∞([0,T ];l1)(ε
1−2µ).

We notice here that the condition µ < 1/2 ensures that the remainder O(ε1−2µ) in the above
equation is a remainder indeed.

Following the former analysis, we approximate the delayed differential equation (49) by a
delay-free equation. To this aim, we first estimate thanks to (49):

‖∂tρd‖L∞([0,T ],l1) ≤
C

εµ
‖ρd‖L∞([0,T ],l1) ≤ Cε−µ.
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On this account, substituting the delayed terms ρd(t − ε2s) by their asymptotic values ρd(t)
in the integral term in (49), we introduce an error in the L∞([0, T ], l1) norm, which can be
estimated by

Cε2
∫ T/ε2

0

ds e−ε
µs s‖∂tρd‖L∞([0,T ],l1) ≤ Cε2

1

ε3µ
.

This estimate together with (49) yields

∂tρd(t, n) = OL∞([0,T ],l1)(ε
1−2µ) +OL∞([0,T ],l1)(ε

2−3µ)

+2Re
∑
k

[ρd(t, k)− ρd(t, n)] Ψε

(
t

ε2
, k, n

)
.

Gronwall lemma ends the proof.

3.3 Asymptotic analysis of the equation for populations

As in the case of uniform relaxations, Lemma 7 reduces the problem to the asymptotic analysis
of (45). The techniques developed in Section 2 show that this study only amounts to the study
of some averages of function Ψε(t/ε

2, k, n). From now on, we restrict once and for all to the
case when function φ is r-chromatic, in that Hypothesis 4 holds. In this case, function Ψε has
the explicit value:

Ψε

(
t

ε2
, k, n

)
= 2|V (n, k)|2Re

∑
α,β∈Zr

φαφβ exp

(
i(α + β) · ω t

ε2

)
× (50)

×1− exp ([−εµγ(k, n)− i(ω(k, n) + β · ω)]t/ε2)

[εµγ(k, n) + i(ω(k, n) + β · ω)]
.

Clearly, resonances which correspond to contributions for values of the parameters α, β, n, k
such that α = −β, and ω(k, n) + β · ω = 0, play a special rôle in the analysis. In the sequel we
show the following theorem.

Theorem 8. Let us define the transition rate (dominant term)

Ψdom (k, n) := 2
|V (n, k)|2

γ(k, n)

∑
β∈Zr / ω(k,n)+β·ω=0

|φβ|2. (51)

Let also ρ
(9)
d be solution to

∂tρ
(9)
d (t, n) =

1

εµ

∑
k

Ψdom (k, n) [ρ
(9)
d (t, k)− ρ(9)d (t, n)], (52)

with initial data ρ
(9)
d (0, n) = ρd(0, n). We assume that µ < 1/2. Then for all T > 0, there

exists C > 0 such that the following error estimate holds:

‖ρd − ρ(9)d ‖L∞([0,T ],l2) ≤ Cεµ.
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Remark. Theorem 8 states in a way that in the case when relaxations tend to zero with ε (slowly
enough), populations relax immediately to the equilibrium states of the equation ∂tρ(t, n) =∑

k Ψdom(k, n)[ρ(t, k) − ρ(t, n)], with some time boundary layer of size εµ. This instantaneous
relaxation to an equilibrium state of course only affects the energy levels that resonate exactly
with the wave.

In other words, everything goes on as if it were possible to pass to the limit as ε goes to
zero, keeping first the relaxations, then pass to the limit in the relaxation term εµ. Note that
the degenerate case Ψdom ≡ 0 is not a priori excluded in the analysis.

The reader should notice that the error estimate takes place in l2 norm here.

The simple but crucial remark that leads to Theorem 8 is the following.

Lemma 9. Let us define the operator Bdom on the Hilbert space l2, which associates to a
sequence u(n) ∈ l2 the sequence (Bdomu)(n) ∈ l2 according the formula:

(Bdomu)(n) =
∑
k

Ψdom(k, n)[u(k)− u(n)].

Then, operator Bdom is a bounded non-positive operator on the Hilbert space l2. In particular,
the exponential exp(tBdom) is well defined as an operator on l2 as t ≥ 0, and its norm is
estimated by 1, for all t ≥ 0.

Proof. The proof of Lemma 9 is obvious, and relies on the positiveness property Ψdom(k, n) ≥ 0,
and the symmetry Ψdom(k, n) = Ψdom(n, k).

Remark. In the case of an arbitrary wave φ, we cannot compute as easily the main contribution
Ψdom in the asymptotic process ε → 0. Therefore we do not have any sign property at our
disposal as put forward in Lemma 9. Because this property proves to be crucial in the sequel
(and the asymptotic result in Theorem 8 does certainly not hold when the operator Bdom has
no sign), this explains why we restrict the analysis to the case of a r-chromatic wave when
relaxations tend to zero with ε.

Proof. We now prove Theorem 8. To this aim, we estimate the difference ρ
(8)
d − ρ

(9)
d . The

equation governing ρ
(8)
d reads

∂tρ
(8)
d (t, n) =

∑
k

Ψε

(
t

ε2
, k, n

)[
ρ
(8)
d (t, k)− ρ(8)d (t, n)

]
,

where the transition rate Ψε is given by (50).

First step: splitting of Ψε. We split Ψε into a dominant and two residual contributions, as
follows:

Ψε

(
t

ε2
, k, n

)
:=

Ψdom (k, n)

εµ
+ Ψres

(
t

ε2
, k, n

)
+ Ψ̃res(k, n),
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where Ψdom is defined by (51). From (50), the two residual contributions are defined as

Ψ̃res(k, n) := 2 |V (n, k)|2 × Re
∑
β ∈ Zr,

ω(k, n) + β · ω 6= 0

|φβ|2

εµγ(k, n) + i(ω(k, n) + β · ω)

= 2 |V (n, k)|2 εµ ×
∑
β ∈ Zr,

ω(k, n) + β · ω 6= 0

|φβ|2

ε2µγ(k, n)2 + (ω(k, n) + β · ω)2
,

and, respectively,

Ψres

(
t

ε2
, k, n

)
:= 2 |V (n, k)|2 ×

×

(
− ε−µ

∑
β ∈ Zr,

ω(k, n) + β · ω = 0

|φβ|2

γ(k, n)
exp(−εµγ(k, n)

t

ε2
)

−Re
∑
β ∈ Zr,

ω(k, n) + β · ω 6= 0

|φβ|2

εµγ(k, n) + i(ω(k, n) + β · ω)
×

× exp([−εµγ(k, n) − i(ω(k, n) + β · ω)]
t

ε2
)

+ε−µRe
∑

α + β 6= 0
ω(k, n) + β · ω = 0

φαφβ
γ(k, n)

exp(−i(α + β) · ω t

ε2
) [1− exp(−εµγ(k, n)

t

ε2
)]

+Re
∑

α + β 6= 0
ω(k, n) + β · ω 6= 0

φαφβ
[εµγ(k, n) + i(ω(k, n) + β · ω)]

exp(i(α + β) · ω t

ε2
)×

×[1− exp([−εµγ(k, n)− i(ω(k, n) + β · ω)]
t

ε2
)]

)
.

Now, the point in the sequel is that the first residual contribution Ψres is small (of order εµ)
thanks to the real part, while the second residual contribution Ψ̃res carries “time-oscillations”
(at frequency ε−2+µ at least), which kill the diverging factors ε−µ and make them of size ε2−2µ.

Second step: preliminary bounds. Let us readily notice that the following three estimates are
straightforward:∑

k,n

|Ψdom(k, n)| ≤ C,
∑
k,n

|Ψres(t/ε2, k, n)| ≤ Cε−µ,
∑
k,n

|Ψ̃res(k, n)| ≤ C εµ , (53)

for some C > 0 independent of t and ε. All these bounds indeed stem from the decay assump-
tions made on V (k, n) as well as on the Fourier coefficients φβ. For instance, we may prove the
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last (and most difficult) bound appearing in (53) by writing∑
k,n

|Ψ̃res(k, n)| ≤ C εµ
∑
k, n, β,

ω(k, n) + β · ω 6= 0

|φβ|2|V (k, n)|2

|ω(k, n) + β · ω|2

≤ C εµ
∑
k,n,β

(1 + |β|)2(r−1+δ) (1 + |n|)2(1+δ) (1 + |k|)2(1+δ) |φβ|2 |V (k, n)|2

≤ C εµ .

The Diophantine estimate on ω (Hypothesis 4) is used in the second inequality, while the strong
decay assumption (43) is used in the last estimate.

Third step: rewriting the equations. With the notations introduced above, Eq. (45) for ρ
(8)
d

becomes

∂tρ
(8)
d (t, n) = ε−µ

∑
k

Ψdom(k, n)[ρ
(8)
d (t, k)− ρ(8)d (t, n)]

+
∑
k

Ψres

(
t

ε2
, k, n

)
[ρ

(8)
d (t, k)− ρ(8)d (t, n)]

+
∑
k

Ψ̃res(k, n)[ρ
(8)
d (t, k)− ρ(8)d (t, n)],

and this equation should be compared with

∂tρ
(9)
d (t, n) = ε−µ

∑
k

Ψdom(k, n)[ρ
(9)
d (t, k)− ρ(9)d (t, n)].

To reduce notations, we now introduce for all t the operators Bres(t/ε2) and B̃res naturally

associated with Ψres and Ψ̃res, which operate on l2:

(
Bres(t/ε2)u

)
(n) :=

∑
k

Ψres

(
t

ε2
, k, n

)
[u(k)− u(n)] ,

(B̃resu)(n) :=
∑
k

Ψ̃res(k, n)[u(k)− u(n)] .

We know from estimates (53) that:
• Bdom is a bounded operator on l2, and its norm is estimated by C,
• for all value of t the operator Bres(t) is likewise bounded on l2, and its norm is estimated

by Cε−µ,
• the norm of B̃res is bounded by Cεµ.
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With these notations, and if functions ρ
(8)
d and ρ

(9)
d are considered as functions of the time t

with values in l2, Eqs (45) and (52) governing ρ
(8)
d and ρ

(9)
d respectively read

∂tρ
(8)
d (t) = ε−µBdomρ

(8)
d (t) +Bres

(
t

ε2

)
ρ
(8)
d (t) + B̃resρ

(8)
d (t),

∂tρ
(9)
d (t) = ε−µBdomρ

(9)
d (t).

From this, in order to estimate the difference

∆(t) := ρ
(8)
d (t)− ρ(9)d (t),

we write

∂t∆(t) = ε−µ(Bdom∆)(t) +Bres

(
t

ε2

)
ρ
(8)
d (t) + B̃res

(
t

ε2

)
ρ
(8)
d (t),

and we solve directly

∆(t) =

∫ t

0

ds exp([t− s]ε−µBdom) Bres
( s
ε2

)
ρ
(8)
d (s) (54)

+

∫ t

0

ds exp([t− s]ε−µBdom) B̃resρ
(8)
d (s)

=: ∆(1)(t) + ∆(2)(t).

We now estimate separately each term on the right hand-side of (54).

Fourth step: estimating the first term in (54). To take advantage of the time oscillations of
operator Bres(t/ε2), and to display clearly that the right hand-side of (54) tends to 0 with ε,
we carry out a natural integration by parts in the integral with respect to s and we obtain

∆(1)(t) = ε2
(∫ t

0

ds Bres
( s
ε2

))
ρ
(8)
d (t)

+ε2−µ
∫ t

0

ds exp([t− s]ε−µBdom) Bdom

(∫ s/ε2

0

du Bres(u)

)
ρ
(8)
d (s)

−ε2
∫ t

0

ds exp([t− s]ε−µBdom)

(∫ s/ε2

0

du Bres(u)

)(
ε−µBdom +Bres

( s
ε2

))
ρ
(8)
d (s).

Consequently, taking advantage of the bounds (53), as well as Lemma 9 (non-positiveness of
Bdom), we obtain the estimate

‖∆(1)‖L∞([0,T ],l2) ≤ Cε2−µ sup
0≤t≤T

∥∥∥∫ t/ε2

0

ds Bres(s)
∥∥∥
L(l2)
‖ρ(8)d ‖L∞([0,T ],l2).
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Besides we have

‖ρ(8)d ‖L∞([0,T ],l2) ≤ ‖ρ(8)d ‖L∞([0,T ],l1)

≤ ‖ρ(8)d − ρd‖L∞([0,T ],l1) + ‖ρd‖L∞([0,T ],l1) ≤ Cε1−2µ + C,

thanks to (46), and the fact that ρd is bounded. It follows that

‖∆(1)‖L∞([0,T ],l2) ≤ Cε2−µ sup
0≤t≤T

∥∥∥∫ t/ε2

0

ds Bres(s)
∥∥∥
L(l2)

. (55)

There remains to estimate the supremum occurring in (55).

To this aim, we proceed as in the proof of Theorem 4 (see (29) and the next estimates): we
integrate at sight function Ψres, and taking advantage of the Diophantine condition on the
frequency vector ω (Hypothesis 4), together with the strong decay of V (assumption (43)), we
deduce the estimate

sup
0≤t≤T

∥∥∥∫ t/ε2

0

ds Bres(s)
∥∥∥
L(l2)
≤ sup

0≤t≤T

∥∥∥∫ t/ε2

0

ds Ψres(s, k, n)
∥∥∥
l1
≤ Cε−µ.

In short, we showed the estimate

‖∆(1)(t)‖L∞([0,T ],l2) ≤ Cε2−2µ,

and this last quantity tends to 0 with ε.

Fifth step: estimating the second term in (54). The analysis of ∆(2) now uses (53) in a direct
way, in that we write

‖∆(2)(t)‖L∞([0,T ],l2) ≤ C T sup
s∈[0,T ]

‖B̃resρ
(8)
d (s)‖l2

≤ C‖B̃res‖L(l2) sup
s∈[0,T ]

ρ
(8)
d (s)‖l2

≤ C‖Ψ̃res‖l1
≤ C εµ ,

where we made use of the non-positiveness of Bdom, the boundedness of ρ
(8)
d (see the previous

step), and the estimate (53) proved before.

Conclusion. Theorem 8 is now proved since µ < 2− 2µ.
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