Article Dans Une Revue Annali di Matematica Pura ed Applicata Année : 2014

Metrics with equatorial singularities on the sphere

Résumé

Motivated by optimal control of affine systems stemming from mechanics, metrics on the two-sphere of revolution are considered; these metrics are Riemannian on each open hemisphere whereas one term of the corresponding tensor becomes infinite on the equator. Length minimizing curves are computed and structure results on the cut and conjugate loci are given, extending those in \cite{anihp-2008a}. These results rely on monotonicity and convexity properties of the quasi-period of the geodesics; such properties are studied on an example with elliptic transcendency. A suitable deformation of the round sphere allows to reinterpretate the equatorial singularity in terms of concentration of curvature and collapsing of the sphere.
Fichier principal
Vignette du fichier
art.pdf (3.2 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-00319299 , version 1 (08-09-2008)
hal-00319299 , version 2 (27-10-2008)
hal-00319299 , version 3 (28-11-2008)
hal-00319299 , version 4 (08-09-2010)
hal-00319299 , version 5 (08-12-2010)
hal-00319299 , version 6 (27-12-2011)
hal-00319299 , version 7 (19-03-2013)

Identifiants

Citer

Bernard Bonnard, Jean-Baptiste Caillau. Metrics with equatorial singularities on the sphere. Annali di Matematica Pura ed Applicata, 2014, 193 (5), pp.1353-1382. ⟨10.1007/s10231-013-0333-y⟩. ⟨hal-00319299v7⟩
404 Consultations
410 Téléchargements

Altmetric

Partager

More